Section 1

INTRODUCTION

AP-101S WITH SHUTTLE INSTRUCTION SET

The AP-101S is a high-speed general-purpose computer intended primarily for
real-time applications such as guidance, navigation, control, and data processing.
The AP-101S is a member of the advanced System/4 Pi family of digital computers,
and is software compatible with AP-101C/M, described in IBM No. 6246156B,

30 Jan, 1979. This family shares and is unified by extensive design experience,
proven technology base, and common manufacturing processes.

This Principles of Operation manual provides a direct comprehensive description
of the system structure; the arithmetic, logical, branching, and status switching; and
the interruption system. This publication defines and describes features common to
all AP-101 computers. These features are the basis for IBM-developed support
software and are compatible with compiler development efforts now in process.

Execution times and nonstandard features and functions are described in separate
documents. This is because aerospace computers characteristically include user
defined features such as unique input/output channels, and special discretes. These
will be incorporated into the AP-101S as pluggable options. Furthermore, the
AP-101S is microprogrammed and is designed to permit incorporation of additional
instructions and operations without redesign and requalification. Such extensions are
also described separately.

ote: Thie docomind <o alos apyloialle 72
o ﬁﬁ/a/f/é /zf_g M AN LA Gttt

o Lhe APIO/S commmgTel.

1-1/1-2

Section 2

AP-101S STRUCTURE

SHUTTLE INSTRUCTION SET

The AP-101S system structure encompasses the functional operation of main
storage, the central processing unit (CPU), and program-controlled 1/0 facilities. The
overall definition is open ended ard includes all the basic facilities necessary to accom-
" modate additional specialized and/or application-dependent 1/0 channels and features.

The modular AP-101S system structure can support configuration alternatives

ranging from a self-contained single processor to a full symmetrical shared-storage
multiprocessing system.

MAIN STORAGE

The functional operation of main storage is unrelated to the physical width of the
information paths or cycle time.

Six evvoy covreetion bty a-nd Three voted

INFORMATION FORM::V _
The system transmits information between main storagé and the CPU in units of

16 bits, or h‘x}ntegé multiple of 16 bits. Each 16-bit unit of information is called a
halfword. AZparity bit-and-@ storage protection bitsare also associated with each half-
word, but later references in this manual to the size of data fields exclude these bits.

Halfwords may be handled separately or in pairs. A fullword is a group of two
conasecutive halfwords. Both halfword and fullword instructions and operands are used.
Their location is always specified by the address of the leftmost halfword. The instruc-
tion length is designated implicitly in every instruction; the operand length is also implicit.

Within any instruction and operand format, the bits making up the format are consecu-
tively numbered from left to right, starting with the number 0, as shown in Figure 2-1.
\

ADDRESSING

Halfword locations in storage are consecutively numbered starting with 0. Each
number is considered the address of the corresponding halfword. The addressing
technique uses a 19-bit binary address to accommodate a maximum of 219 halfword
addresses. This set of main storage addresses includes some locations reserved for
special purposes, such as program status words; consequently, these special locations
should not be used for any purpose not implicitly defined.

Halfword

N N N O I

0 15
Fullword

I 1 1 T T (T T (T I A O B
0 15 16 3

Figure 2-1. Instruction and Operand Bit Numbering

INFORMATION POSITIONING

Fullword operands must be located in main storage on even halfword boundaries.
That is, the least significant bit of the operand address, when expressed in binary,
must always be zero. Fullword instructions may begin at any address.

CENTRAL PROCESSING UNIT

The central processing unit (CPU) contains facilities for addressing main storage,
for fetching or storing information, for arithmetic and logical processing of data, for
sequencing instructions in the desired order, and for {nitiating the communication be-
tween storage and external devices.

The control section guides the CPU through the functions necessary to execute the
program,

PROGRAM ADDRESSABLE REGISTERS

Two sets of eig'ht fixed-point general registers and one set of eight floating-point
registers are under explicit program control. The contents of one or more of these
registers (32 bits) participate in most CPU operations.

Conceptually, an additiqnal‘doublewotd status register, called the program status
word (PSW), i3 the focal point for machine status. The contents of the PSW are updated
during each instruction. Consequently, the PSW reflects current machine status fol-

lowing every instruction. The PSW participates implicitly in status switching, branching

operations, and address calculations.
%

2-2

|

In addition to the PSW and the general and floating-point registers, the CPU also
contains working registers used for storage addressing, storage buffering, shift and
iteration counting, and op;erand storage. These registers are of no direct concern to
the programmer and are not described herein.

The contents of the PSW specify which of the two sets of general registers is in
current use. Only the contents of the selected general register set can participate in
arithmetic operations and the contents of unselected sets of general registers can not
be altered by a program. An alternate set of general registers can be selected by
changing the PSW. Only one set of the fixed-point, general-purpose registers and the
floating-point registers are available to the program at any one time.

General register contents can be used interchangeably as operands for arithmetic,
logical, and shifting operations, or as base and index registers for relative addressing.
Each set of general registers is numbered from 0 through 7 and is addressed as shown

in Figure 2-2.

General Register Function

Register

Number Operand Base Index
0 000 00 None
1 001 01 001
2 010 10 010
3 011 11 or None 011
4 100 100
5 101 101
6 110 110
7 111 111

Figure 2-2. General Register Addresses

Note that general registers 4 through 7 cannot contain base addresses and that
general register 0 cannot contain an index.

P For some operations, an even/odd pair of general registers are linked to form a
64-bit doubleword register. The most significant half of a doubleword operand is
contained in the even-numbered register; the least significant half of the doubleword in
the next higher odd-numbered register. Doubleword operands are addressed by speci-
fying the even numbered address of the register containing the most significant portion
of the operand.

Fey a.olc{f:h’f;v? date , 7c.~|.c—ra/ yesss Fev s o -3 ca be a.uy—»qc-n‘f'm{

b\j 7 bit Data Secteor A xtension (0515') ryes/85ters eor é] *he OISR
v the PSW Fo addyvess beyond /6 bF capabilifics . Téere

are

/6 DSEs) ome foy ecach of +he & gemeva/ purpese vey;:'{'cﬂ -~

cach of the 7":/0 sers of gemeral vegrSteys. THIS featvve shall
e ! e

woT e used vy (”’osrnm";/c.fs. THBA IREAR Foll sme A

FIXED#POINT DATA REPRESENTATION

Data representation {s fractional, with negative numbers represented in two's
complement form. A halfword operand is 15 bits plus sign; a fullword operand is 31
bits plus sign, as shown in Figure 2-3.

In fractional data representation, the binary point is immediately to the right of
the sign.

Fixed-Point Halfword Operand

S Fraction

NN
0 1 15

Fixed-Point Fullword Operand

S Fraction’

I T 1 T O s I
01 3

Figure 2-3. Fixed-Point Operand Formats

INSTRUCTION FORMATS

The length of an instruction format can be either one or two halfwords. Long
format instructions provide maximum range and extended flexibility for addressing
storage operands. Short instructions are used to (1) specify register-to-register
operations, and (2) specify storage operands in cases where a small displacement is
sufficient and complete address modification capability is not required.

Instruction formats overlap. Programs are written so that in many instances any
given operation can be coded using either a halfword or a fullword instruction. In such
cases, maximum use of halfword instructions results in increased storage efficiency
and performance,

The three basic instruction formats are as shown in Figure 2-4. Halfword instruc-
tions are automatically selected by the assembler unless otherwise specilied by the pro-
grammer.

2-4

4.0 HISH LEVEL FUNCTIOMAL DESCRIPTION

4.1 GEMNERAL SYSTEM OPERATION

The AP-101S was formed by the integration of a redesigned B1-B
AP-101F processor and a repackaged Input/Output Processor (IOP) from
the existing Shuttle computer. Redesign and repackaging permits both
of these elements to be housed in & single structure. Figure 2 on
page 4 shows the AP-101S Block Diagram.

The elements utilized from the AP-101F are the CPU, MHU (Memory Man-
agement Unit), and Interrupt sections. The microcode has been modi-
fied so existing shuttle software can be used on the AP-101S. The
Timing page, SDI (Software Development Interface) page and the SIB
bus have been eliminated. The unused circuitry in the MMU has been
removed to permit integration of the timing and SDI functions into
the MHMU.,

The IOP has been repackaged using medium scale integration to reduce
the number of pages from fourteen to seven. The IOP has maintained
the same timing as the original processor.

All of the pages use Modular Computer System (MCS) page technology.
The repackaging allows the AP-101S to be housed in a single box.

The CPU performs the functions of computation, storage and communi-
cation of data for the Shuttle Orbiter. The CPU executes in-
structions from main store. Main store 'is controlled by the MHU,
which handles all memory access requests from the CPU and I0OP.

High Level Functional Description 3

- __. nao

WEIBRLQ Yo01g S1gr-gy - Pandyy

SLoL-dv

ﬂll D — - SR ea— m—— e Sy —
- —
-
| 39V vIy3s oi6z/106z |,]
i le) SIdNYYILNI HIONIND3IS 1,
_ NOILND3IX3
- 9ndd |+
_ ssjvaav| |o
ot REAU BEEEE] B ST F
- anv| | |
Zoviva | |{Nononuisn
— {91) ss3yaay ando |
] IVIO0T MO14
_ . oz.s_:m viva ||
1as NOILND3X3T | | j
STOULINGI ANV | o |
v Nda
~ 39V Nww
sna
IYNHIIN
_ 39V 1371Tvuvd —] 1Y0ddNS 3DV e s N4
. N9 | go.—m <P<Q anNY
. SSIYAAY NWW
i
2 {cng-H)
9 dS nNdd
ss3yaav goo3y
TYIISAHd cEviva
S116 0S X NO5Z .
SOWD
o fd2d
. N _
) MO14 viva _
™ MO14 viva :
— » "D3IS QUIIW “
viva “INI '8 SN1VIS
STOHINOT _
::So\:zz.A e — ¥344n8 VIW
31343510 .
: 41NI VIW >
39V —
131349510 39V . o .
WVYYOVIQ M201:

AP-101S Space Shkuttle GPC

4

The IOP functions as a programmable, time-shared processor that
transmits and receives Shuttle Orbiter subsystems data under control
of the CPU.

The CPU communicates with the IOP by means of Program Controlled
Input/0utput (PCIO) instructions. - PCIO transmissions involve a com-
mand word and data from either the CPU or IOP.

The Shuttle Orbiter subsystems are connected to the IOP by 26 serizal,
1-MHz data buses. Data bus~to-I0OP interface is accomplished by 2«
Multiplexer Interface Adapters (MIAs) located in the I10P. The MIAs
perform such functions as parallel/serial conversion, Manchester en-
code and decode, parity generation and detection, and bit count de-
tection. The I0P handles the processing required to service the 24
data buses. '

The 24 data buses each have a Bus Control Element (BCE). The BCEs
are given instructions by the Master Sequence Controller (MSC) on how
to handle data. The MSC executes iistructions from main store as
directed by PCIO instructions from the CPU. The MSC/BCE instructions
and data are fetched from main store through Direct Memory Access
requests. The MSC has a set of programmable registers in Local Store.
These registers include a PCIO register, index register and program
counter.

The BCEs execute programs from main store specified by MSC in-
structions. Each BCE also has a set of programmable registers in
Local Store and can read or write I/0 data into main memory via Direct
Memory Access (DMA). 1Included in the registers is an indicator reg-
ister which contains one bit for each BCE. ~This bit is set and reset
by s BCE to communicate with the MSC.

Each BCE is sequenced by a timing 'wheel' which allows one microin-
struction from each BCE to be executed at a time. The MSC is also
in this timing sequence, but it gets eight slots in a complete turn
of the '"wheel' whiie each BCE gets only one. One MSC microinstruction
is executed after three BCE microinstructions. Some MSC and BCE in-
structions may take more than one rotation of the 'wheel' to be exe-
cuted.

The Interrupt page contains a processor to handle intarrupts. The
interrupt processor prioritizes, masks, categorizes and performs any
other processing that is necessary before giving informaticn to the
CPU. A ane byte word is generated to inform the CPYU into which cat=—
egory the interrupt falls. Additional information allows the CPU to
formulate a3 six bit address for a PSW sSWwap and begin processing the
interrupt. .

Each of the three major components of a GPC (CPU, IOP,. and Intarrupt
Page) is controlled by independent microcode. The CPU microarchi-
tecture is described in detail in "Microcontrol Implementation For
CPU" on page 113, the Interrupt microarchitecture is described in
"Microcontrol Implementation For INT"™ on page 191, and the IQOP

High Level Functional Description '5

microarchitecture is described in "Microcontrol Implementation For
IOP™ on page 211. .

4.2 AP-101S CENTRAL PROCESSING UNIT

The AP-101S central processor unit is optimized for both MMP and
MIL-STD-1750A Hotice 2 architectures and is comprised of these func-
tional units:

. Instruction Unit (I-unit)

¢ Effective Address Unit (EA-unit)
o Execution Unit (EX-unit) -
o Fractional Data Flow

. Exponential Dafa Flow

. Sequencer N

These units are organized to execute instructions in a pipeline
fashion designed to provide results at a rate of one per machine cycle
(250 ns) when operating on simple instructions (with the pipe full).
The pipeline is shown in Figure 3 on page 7.

fhe Instruction unit is responsible for prefetching instructions.
It provides a logical instruction address ts the Memory Management
Unit, which then translates this to a physical address hefore fetch-
ing the instructiaon. The EA-unit decodes the instruction to detar-—
mine what type of addressing the instruction specifies, and uses its
data flow to calculate (if necessary) the effective (logical) address
of the operand. This logical address is translated to a physical
address in the MMU, and the operand is fetched. The EA-unit provides
the operand and decoded instruction to the Execution unit and selects
the general registers specified by the instruction.

The EX-unit performs the actual execution of the instruction via
microprogramming (i.e., microcode provides the signals that control
the data flow through the hardware). Each macroinstruction corre-
sponds to one or more microinstructions. At the and of a microcode
routine which implements a macroinstruction, a 1:2S56-way branch in
the microcode is executed in order to access the section of microcode
required for executiocn of the following macroinstruction.

The CPU machine cycle is 250 ns and is the time required to read,
compute, and write the result of a simple register to ragister oper-
ation such as add (RA = RA + RB). Each pipeline operation is com-
pleted in one machine cycle and data can be passed from one stage of
the pipe to the next at this rate when the EX-unit is operating at
its maximum rate. Three additional cycle times for the EX-unit are

6 AP-101S Space Shuttle GPC

R

HBUS (from memory)

—1
v emnc—
INSTRUCTION TRANSLATE (IX)
INSTRUCTION
l -> UNIT
v
INSTRUCTION FETCH C(IF)
v _-l‘,
EFFECTIVE ADDRESS (EA)
EFFECTIVE
| '> ADDRESS
v UNIT
OPERAND TRANSLATE (0X)
v JRS—
EXECUTIO:!
EXECUTION (EX) -> UNIT
Figure 3. ° CPU Pipeline
provided to speed up the execution of multicycle instructions: 125

ns and 150 ns are for microcoded operations which do not raquire a
full machine cycle to execute, and 100 ns is used for high-speed it-
erations typical in operations such as multiplication, division, and
shifting. '

Synchronization of the pipeline is accomplished by means of the ENDOP
command which is issued at the end ot each macroinstruction by the
microprogram. The ENDOP command sigials each stage of the pipeline
to output its results (pass them on to the next stage) and to begin
working on its new input (the output from the previous stage) at the
beginning of the next machine cycle. When the EX-unit is operating
on simple instructions, the ENDOP command may be issued every 250 ns,
one machine cycle. When the EX-unit requires more than 250 ns for
the execution of an instruction, the operation of all other stages
in the pipeline is suspended (no ENDOP is issued) except for the
prefetching of instructions by the I-unit (which continues independ~-
ently until the 16 x lé6-bit instruction file is full). When the EX
unit has completed its operation the microprogram issues an ENDOP and
all stages of the pipeline restart at the beginning of the following
machine cycle. The ENDOP signal also signifies the end of a microcode
routine, causing the EX-unit to branch (1:256-way branch) to the
start of a new routine based on the next macroinstruction.

High Level Functional Description 7

4.3 MAIMN STORAGE

.he AP-101S contains twoc battery-backed Static RAM CMOS pages, each
containing 128K X 32 bits plus store protect bits and Error Cor-
rection Code (ECC) bits. Associated with each main memory halfuord
are three store protect bits and six Error Correction Code (ECC) bits
which are determined by the 16 data bits.

The CHMOS memory has an access time of 250 ns and a cycle time of 250
ns. This includes error detection and correction (EDC).

The AP-101S is also capable of operation with dynamic memory pages
of the type found in the Bl=-B AP-~101F computer. A signal indicating
the t,pe of memory in use is generated on the memory page, and this
signal is used to configure the interface portion of the MMU. Both
memory pages in use must be of the same type. The dynamic memory
configuration provides 128K words of memory. Except for the differ-—
ence in memory size, the type of memory in use is transparent to the
software. Dynamic memory is not battery-backed and will not retain
data in the event of power loss.

4.6 INFOPMATION FORMATS

“he system transmits information between main storage and the CPU in

aits .of 16 bits, or in integer multiples of 16 bits. Each lé-bit
unit of ‘information is called a halfword. Six error correction bits
and three voted storage protection bits are also associated with each
halfword for the AP-101S, but later references in this workbook to
the size of the data fields exclude these bits.

Halfwords may be handled separately or in pairs. A fullwora is a
group of two consecutive halfwords. Both halfword and fullword n-
structions are used. Their location is always specified by the ad-
dress of the most significant halfword. The instruction length is
designated implicitly in every instruc:ion. The operand length is
also implicit.

Within any instruction and operand format, the bits making up the
format are consecutively numbered from left to right, starting with
the number zero, as shown in Figure 4 on page 9.

8 AP-101S Space Shuttle GPC

7/

Halfword

U U S S JUU USSRV AU SO O NN NN

0 15

Fullword .
1NN TSN NS TN TSN UMY TS T FUUNON TN S NN TN RO TN N SN T TN VOO NN TSNS NSNS U TN N U N N N

0 31
Figure 4. Instruction and Operand Bit Numbering

4.5 ADDRESSING

Halfword locations in storage are consecutively numbered starting
with zero. Each number is considered the address of the correspond=-
ing halfuword. The addressing technique uses a 19-bit binmary address
to accommodate a maximum of 512K halfword addresses. This set of main
storage addresses includes some locations reserved for special pur-
poses, such as program status words. Consequently, these special lo-
cations should not be used for any purpose not explicitly del’inea.

6.6 INFORMATION POSITIOMIMG

Unlike previous versions of the AP-101 computer, the AP-101S does not
require either fullword instructions or fullword/doubleword cperands
to be located in main storage on even boundaries.

4.7 _PROGRAM ADDRESSABLE REGISTERS

Two sets of eight fixed-point general registers and one set of eighv
floating-point registers are under explicit program control. The
contents of one or more of these registers (32 bits each) participate
in most CPU operations. Associated with each of the general purpose
registers is a 4-bit addressing extension register (Data Sector Ex-

High Level Functional Description 9

tension or DSE), the use of which is described below in Extended Ad-
dressing. :

onceptually, an additional doubleword status register, called the
Program Status Word (PSW), is the focal point for machine status.
The contents of the PSW are updated during each instruction. Conse-
quently, the PSW reflects current machine status following every in-
struction, The PSHWH participates implicitly in status switching,
branching operations, and address calculatiaons. Condition codes re-
sulting from an instruction are also part of the PSH.

In addition to the PSW and the general and floating—boint registers,
the CPU also contains working registers used for storage addressing,
storage buffering, shift and iteration counting, and operand storage.

The contents of the PSW specify which of the two sets of general
registers is in current use. Only the contents of the selected gen-
eral register set can participate in arithmetic operations and the
contents of unselected sets of general registers cannot be altered
by a program. An alternate set of general registers can be selected
by changing the PSH. Only one set of the fixed point, general purposae
registers and the floating-point registers are available to the pro-
gram at any one time.

General register contents can be used interchangeably as operands for
arithmetic, logical and shifting operations, or as base and index
registers for relative addressing. Each of the general registers is
numbered from 0 through 7 and is addressed as shown in Figure 5.

General "Register Function
Register
Number Operand Base Index
0 000 00 Not Used
1 001 01 001
2 010 10 010
3 011 11 or none* 011
4 100 : : 100
5 101 101
13 110 . 110
7 111 111

#¥11 = Register 3 for SRS; none for RS
Figure 5, General Register Addresses

Note that general registers 4 through 7 cannot contain base addresses
and that general register 0 cannot contain an index.

10 AP-101S Space Shuttle GPC

For addressing data, general registers 0-3 can be augmented by 4-bit
Data Sector Extension (DSE) registers or by the DSR in the PSH to
address beyond l6-bit capabilities. There are 16 DSEs, one for each
of the eight general-purpose registers in each of the two sets of
general registers.)

For some operations, a pair of general registers is linked to form a
64-bit doubleword register. The most significant half of a
doubleword operand is contained in the specified register; the least
significant half of the doubleword is in the next higher-numbered
register (determined by modulo 8 addition of one (1) to the specified
register). Note: If Reg 7 is specified, the least significant half
of the double word operand is contained in Reg. 0. :

One set of eight 32-bit floating-point registers is provided and
these registers are separate and distinct from the general-purpose
registers.

4.8 DATA REPRESENTATION

Fixed-point data representation is both integer and fractional, wWwith
negative numbers represented in twos complement form. A halfword
operand is 15 bits plus sign, a fullword operand is 31 bits plus sign,
and a doubleword operand is 63 bits plus sign, as shown in Figure 6
on page 12. In fractional data representation, the binary point is
immediately to the right of the sign. In integer arithmetic, the
binary point is to the right of bit 15. ‘

Unless otherwise stated, fixed-point arithmetic operations assume a
fractional data type. :

Floating point data occupies either a fullword format or a doubleword

format. These formats differ between the MMP and 1750A architectures,
as depicted in Figure 7 on page 13 and Figure 8 on page 14.

High Level Functional DPescription 11

Fixed—Point Halfword Operand

S Fraction

—Radix Point

7\

—Radix Point

Fixed—Point Fullword Operand
I

w

Fraction

31
VAl AN
—Radix Point
Fixed-Point Doubleword Operand
S Fraction cea e
R IS SN A NN NS OO N N O T S AR S NN NN S NN NS O A O I O
01 63
7\

‘—Radix Point

Figure 6. Fixed-Point Operand Formats

12 AP-101S Space Shuttle GPC

Short Floating—Pdint Number . (MMP Architecture)

Exponent S

Fraction

b—Radix Point

Long Floating—Point Number (MMP Architecture)

Exponent S Most Significant Fraction v

Ll [NS NS NN NN DN NN (NN NN NN NN NNNON N NN U NN NUN NN SO NONN NN N

0] 7 8 9 31
I\

——Radix Point

Least
Significant Reserved/Ignored
Fraction .
| T I T T | I N IOV DA NN A TN IO NN N O MELINN TR A IO O N N O
32 _ 39 63
40
Figure 7. Floating-Point Operand Formats (MMP Architecture)

High Level Functional Description

13

Short Floatiﬁg—Point Number (1750A asrchitecture)

MSB LSB° HMSB LSB
lS Mantissa Exponent
| NS RO RN TN PO VU AR N AN PO MO N N N o I I | | IO I A B
01 23] 31
/l\ . 26
Radix Point
Long Floating—Point Number (1750A Architecture)
S Mantissa (MS) Exponent N
L L1 I T S O NN B [| I T IO I O A
01 23 | 31
7N\ 24
—Radix Point
.. Mantissa (LS) Unused/Reserved
| DA DO N U0 NN TR FOOE JO NN N N N N B | IR N O TN NN N N R N N O s
32 47 63
Figure 8. Floating—-Point Operand Faormats (1750 Architecture)

.9 INSTRUCTION FORMATS

The length of an instruction format can be either one or two 16-bit

Wwords. In contrast wWwith
fullword) instructions

16=-bit
Aprovide

(halfuword)
increased

instructions, 32-bhit

addrassing, permit the

specification of additional address modification, and make possible

the designation of special
structions. Hal fuord

register—-to-register oparstions,

conditions

instructions

ana
is sufficient and complete address

cases where a small displacement

modification is not required.
Instruction formats overlap.

a fullword instruction.

14 AP-101S Space Shuttle GPC

are used = to (1)

Jump in-
specify
speciTy storage aopersnds in

to test for in

Programs are written so that, in many
instances, any given operation can be coded using either a halfword
In such cases, maximum use of halfword

11.0 1LOW LEVEL FUNCTIONAL DESCRIPTION

11.1 BACKPANEL FUNCTIONAL DESCRIPTION

The Backpanel provides the means of connecting all the pages in the
AP101S Computer to each other and the outside world. It is a Multi-
layer Interconnection Board (MIB) with connectors for each page, the
Power Converters, and the Input/Qutput (I/0) Wiring Harness.
Figure 130 on page 256 gives a side view of the AP101S Computer
showing the Backpanel and which page is in each connector.

11.1.1.1 Backpanel Lavout

There are 23 slots or places for connectors in the backpanel as de--

fined below. The input voltages available to each slot are also
listed. -
SLOT DESCRIPTION INPUT YOLTAGES
A0l I/0 Harness +5 MEMORY
AD2 AD Page (Age and Discretes) +5V,+12V,+5 MEMORY

AO3 MIA Page (Manchester Inter face Adapter) +5V,+12V,-12V
AQ4 MIA Page (Manchester Interface Adapter) +5V,+12v,-12V
AO0S MIA Page (Manchester Interface Adapter) +5V,+12V,-12V

AO6 MC Page (Master Sequencer Controller) +5V

AQ7 IB Page (I/0 Buffer) +5V

AD8 SI Page (Status and Interrupt +5V

AD9 FT Page (Flow Top) +5Y

ALO Spare Slot 5y

All Spare 3Slort +3V

Al2 FB Page (Flow Bottom) , +5V

Al3 IM Page (Interface and MIA Control) +5V

Alg CC Page (CPU 3) +5V

AlS CB Page (CPU 2) - +5VY

Alé CA Page (CPU 1) +5Y

Al7 IN Page (Interrupt) +5V

Al8 MB Page (MMU 2) +5V

AlS MA Page (MMU 1) +5V

A20 CMOS Memory Page +5 MEMORY

A2l CHM0S Memory Page +5 MEMORY

A2 +5 Yolt Converter (Power Supply) 28 YDC -

A23 12 Volt Converter (Pawer Supply) 5 28 vYDC
Figqure 129, Backpanel Slot Input Voltages

All the connectors have 295 Pins except the I/0 Harness connecrtor
(AO01) which has 300 pins and the +5 Volt and 12 Volt Power Converters
(A22 and A23) which have 125 pins.

Low Level Functional Descriptiaon 255

M3LIA @apLlS STOTIdY

‘0Ll 2G4

Lo e B B e T e T S B B e e e e e e e B T e B e e N e T T e B T e IO e e T e SO]

|

It

@

)

)

LA

ANO]
AZ1

AP-101S Space Shuttle GPC

256

BACKPANEL
11.1.1.2 Backpanel Stackup

The Backpanel consists of 23 layers as shown in Figure 131 on page
257. These include the "0™ top and ™"Q" bottom, eleven signal layers,
and various voltage and ground layers. One signal layer is divided
to provide straight runs for the MIA channels without any interfer-
ence from other signals. This divider separates A0l through AO05 from
the other backpanel slots. Some of the voltage layers are also dij-
vided.

LAYER COPPER DESCRIPTION
NUMBER THICKHNESS
1 1 0z "0" TOP, FOIL
2 2 0z 28V, +5V
3 2 0Z SIG 1 -
4 1 92 SIG 2
5 1 02z +12Y, 28V RETN
6 1 0z -12v, 28V
7 1 0Z SIG 3
8 1 0z SIG 4
9 1 02 +5V, 28V RETN
10 1 0Z BATTERY, +10V CHARGE 1 & 2
11 1 0z SIG 5
12 1 0z , SIG 6
13 1 02 CMOS +5V, CHAS GND
14 1 0z GND, 28V
15 1 0z SIG 7
16 1 0Z SI1IG 3
17 1 02z 5ND, 28V RETN
i3 L 0Z +5V, 28V RETN
L9 1 0z 5IG 9
20 2 02 SIG 10
21 2 0Z GND ‘
22 2 0Z SIG 11, MIA
23 1

0z "0"™ BOTTOM

Figure 131. Backpanel Stackup

Low Level Functional Description 257

b

11.2 CPU PAGES

11.2.1 CPU Functional Description

The AP-101S Central Processor Unit is optimized for both MMP and
MIL-STD-1750A Notice 2 architectures, although the 17504 architecture
is not implemented in the standard AP-101S configuration. The
AP-10156-1750, a special groundbase development configuration of the
AP-101S, implements the 1750A architecture and shares with the
AP-101S a common Central Processor Unit. The CPU flow diagrams are
shown in Figure 132 on page 259, Figure 133 on page 260, and
Figure 134 an page 261.

11.2.1.1 1Instruction Unit

The Instruction unit uses its own instruction countar (IU-PC) to
prefetch instructions from memory during unused memory cycles. In-
structions are fetched two words (16 bits =ach) at a time and are put
into a 16 x lé-bit FIFO instruction file, shown in Figure 135 on page
262. _

The 16 word instruction file is organized as two 8 x l6-bit buffers.
The most significant 16-bit instruction word is plazed in the even
address portion, and the least significant is placed in the odd ad-
dress portion. The file is further divided between the higher order
" Jddresses (A) and the lower order addresses (B) so that it is accessed
35 shown in Figure 135 on page 262.

in 3ddition to “he A and B sats ar burfers, the instruction file also
has & C set oT buffers to Minimize delays wWnen a branch is taken.
When a branch instruction is ancountared, the EA-unit generates *“he
branch address, prefetches two words from that location, and places
them in the C set of buffers. If the branch is not taken, the in-
struction file continues to fill up the A and B sets of buffers as
before. However, when the Execution unit determines that a branch
is taken, it directs the instruction file to switch from the A and B
buffers to the A and ¢ buffers and to start fetching instructions
from the location Tollowing the branch address (branch address plus
two, since the EA-unit has already fetched the two words locateg at
the branch address and olzced them in *he C tuffer). The A and ¢
Surfers are now the s0urcas ST instructions for *he FA-unit, and no
time has been lost by the switen. The next branch taken wihl c3usea
the instruction file to switch from Suffers A and C back tozbuffers
A 3nd 3 again, and so far+h.

Instructions can e 2ither one or two l6-hit words long, so two
alignment multiplexers (muxes) at the output of the file ensure that
a lé-bit instruction or the most significant word of 3 32-bit in-
struction is always output from the left mux. To correctly output a
l6-bit instruction at an even or odd address, the left mux ‘'chooses
s even or odd input, respectively. For 12-bit instructions start-

258 AP-101S Space Shuttle GPC.

CPY _PAGES (CPU1,.CPU2,CPYU3)

p
¥ MUX BUX)
7
4
INTERNAL i DATA BUS CA218
J B T B o Son
e
¥ ; v Agc nEQ
y 41 Ca270-
ote {n cazz3 ! .cs cazsz
EVEN ¢ COD 7 [SCANG
2
42 CcA213-234 ¥ + unuu;
s CA224.227 L3 A
Bmex 2 conTROLS #exz © cAlsem
A228. CA242204 cA238.30 q
cazze-aze caz12.219 (g
lvui "_:oo EVEN Y y_c_uw B INTERNAL
21 /- Cales-1e8 21 R OUT OATA 8US
/ - - Y v
| ! 22 e Low L mGH
j a2 i % [14 ' 1 1 8 '* %
) Yy "¢ s b E*]
2 e ' L— ——’ CA1413
Sa SA230 ¥ hd -, Y = CA241
]
EA-LS l [eF] A] #c 1] AL '
[* 18] n <) - ™) 4 E™)) n
18 22 2 _/ " 1. 38 PROM
> Cale840 “ 4 e oaTa
i CAZ48247 A \ g 138 INTERNAL
w ¥ “u 1 M “1 | carse < Y _ inDarasus
>
T0€A 2
umt 2eR0 caz0 18
OEFECT = catos
38 E) cat09
1 4 cson cang
ca208
caze
2¥1 m 2 8V o3 N
A \/ "7 i - | canm T CAn |
) i cazio i
zaAls. / ! 2 !
s \ FRACTION ALY / A TR 2 7 v
/ .
-2 st 23 i | cxpamsion | ExPANSION(AECOOE ’ | camiry
h . | | PROM PROM ' | CHECKEHS |
18 3] | L ’
— ' ' | | ‘
: <A21-123 ! B
1 PXP. ALIGN. v >-
v® caie [Llrz‘u‘myu 8| na Y Y
. o 4 Yy Y FLow REGISTER TO CC PAGE
. P " CONTROLS CONTROLS FINAL CHECK
' 2 ¥ MUX BUS CAI1Z TO.ALY.
013y n Y catte :.:::
. g
KPONENT cannam 28R0 1s CA213-214
A FLOW SCAN Calsy cazn{ ogvect o
MEMORY OATA
X) 4 [2 INZ -
1 av. - 18, ’ ¢ o
Y NOAM cam cazis 218
Acnonss | 5000
I,
(el
VV"
O CONOITION
BATALE % AN

Figure 132, CPUl Flow Diagram

Low Level Functional

Description

259

wedbeiq Nor4 2ndm

3

4

‘GfT DunGy4

L,

SIHATY Jungs —— Yus
oIy LRI RL]
oo uﬁu bedad IENETRPICE] vy g MY 10V 1003
™3I0 wnsiow) i A PR aczny L MIrvun
‘ v Ilc- 3 * L
14 3 &1 v
v B 4)¢
~ trrny XNy Yoo v ’
* ty Ju DSty .
(421 k] A B . 0
d - oz | woovore e
g sivy [O OX (1 Jn
ERE T BN SY) € TUTTTTT s o
h.vvvUR JE— e ——
-z. — e
- " 5t e
4 weno —_ y SE1aI) yIvrtry
ﬁ M4 L[] (141 5 R BRITITEFNITS
tey " " 9%
e e ———— 1 }-
: (TTLE]
S IS assim—p1 NoHIMng " NOMMESIE Eodicd
Wiy . _ IvHII MY $2183
03197 OOy sNe LI4LR] gy .
sronaog P
€ A ® gonvun e | _
921 weny
LISALA
ols efe) i . i (L) srmy |° |0 ..u.u.uu \ weey
Stlo 1t Tijo NG NI IVHIY TN e s1207 " 917193
" LRI TP Rerny LUV R Suny
114 ot YW ey e — vvy v — vy
01va ", o ..* a * [3.3] M »
v? oeenr NOTEINMLSHY "t —%- I oriny - —
’ e -) [{TE] ez § srian
N T] teena ——— e i PP v 482
cavy 300010 G710 ' Mt I
— NOTLINHISH 4 NOVEVY 340 — " a|_.lY 'Irevun \uL
A ay 1SS any 'L Nonngsny] o Hanr
7 e 9 MILIIINY » " avronen ~ LALEA)
N ”"
SNNEON 1vNYILNG ~ — Lot Al
I3 [B ——— e —
" &0 otre>
LITLRT 01
173139 81RY | Dy g 1N T TR REVTTT]
aszeaenn] SV kel oo e
0V NOILDNWE T ’ LULES
31T " U .* LA § -.w
NOILONW L SHy . AVMS 0¥ o N SNAVIVA M § avras g ime
ﬂ;«wll.tlllllllllulll,w- IIIIII T == llllll,.illlll.H.llllll.rno..ll.il‘..l.‘..:& 1 orina
Yravad [e . — " R |
OHINDD 5118 oxp) x g [ATIR K] oxp) x § fvupr vy foverw g teeptw g o -
) iy Y_:.-u Qa0 3 oon e agg v REIS) NIAle "in - ! e v
e vuind [fesrod J S G |
i ILE A enny o | o
""_“u e $119) N 1
[LE F AT forian " [AXLE I S - " . nl 1
vy el anvniie jsor1 a2 tiay Lem | —
: [YILR] . voreo timd . BT
ey Yo o e . e L e e L .. H]
- SA— - - - - e —— ——— — /\l
i e . L S A
viseng Ny ar
ve193 e —_
N tsee Blraer] swowinn) tnn;
alr— v ainng _ ««_=u~ P — .:::.— (IR R] s nvy x—
[TIL A — — ——
9501a) *
v u " . « ,
ONVA 20 Wi ——— . H ——— &

vivisnan

AP-101S Space Shuttle GPC

260

'
Yty . -
vy U E] wreativig nol4 €Nd4dI
vy B » W IAIMT SNANY i N
133 -
0HINDD P
MO1iViva 21907 o
ANINO4XY 0L IDYNY j
{s e [1IF5) q
85137 0nedd €v122 wiy 0082 eI
0MIN0T
151N03IM 300330 300719 100330 300310 wum.. R .%.ﬂuhu.”
A n M09 ax3 1vis wor v Isin waav v b ey avwnan
\/ v233 _
n3ot .
we qn ge -
Ll — -t
T ARTYY PP ﬁ
RIbDAL
. 0122 R -
1102 5 wasa 4— _Nm“ "ead -
. 01132 L o e v HS niv
e 2132 e v S ngon
[k > PITEE] W
" " 9 w b v .
A - o
4 9
e ——" 3 B
LN X3 01 j wra eveon
% e eI
L2 L)
INIG 1O
wexze IHOLS
[T .
T ’
I B "
T LIREITER] ol -
ya
vs3 30V LY%“ 7 T .
9521 92233
34a8 (€233
[XREE] xaw SEIE7T I
(AR 1R ssI4a0Y MILEY ({55 Y
0122137 wous o - — -
RINE<1E-] *9 . HAOY SNA 1
ens .
ssz iy L .
¥as3 02123 \ | B - L
PILUTSTES " .
1907 s 4e fe “
Jo18 j noo
eS2 87D
€€132 %3013 1vm i .:_MS,
TR a e LWITECT iy *
r Q 3sVIg 1007 ¢
N i NO1 VY30 x3 r SNW MY IvNyILNg
TAY =0 w30 3svrg [. — — R
o8 —14§ ¥0In0 . e wc- -
e B oy
ey ST eed v / vz JATO TENg
v 100710 W w [JUN B NN g
- doie
. [ey 4 A" e
' $%2013 : e
o, H vgag [Ty b P- - - o
otry we f ©wen :
se1T100 . . 07 e €733 |9t
N1 214 L3 ino
WITE § o yvg — -~ . g UBTLILET]
a0 uum > uuu“u > 4,4::5“ P> viva N a3 o~ "ONINGY
(55 — n oV I -
: €8O °
RS2 95223 § SNvDS o "
ssz0st33] 19w 1° " " In
— > L
. L - — s . . — S

SORINO v in Ty

“9¢ 1

maanh g

ARRIEES |
ave ooy

261

HIMYHE ST 1 MOMNYYR AL}

1
noud NotS
LLLAR]

MY .

M9 119
oyiIr

. (12500 °

Ny
I INOYNTY

pren

- [] 4
oty sz293
v " e
» N
N M
| 1w
wnsd
LN Sewyny ¥
"
l . 2
LILAR I 233
B
K ul,
222K *)
"
()
e [$T55]
ny T
e, g Ny
woyd
ANviIsNOD
.

SO VY N Y e

CPU PAGES

(CPUl,CPU2,CPU3)

Figure 135,

262

A) 16 WORD FIFQ FILE

=15 ITS—™™

[

Q@r-NLLAENVNG Yy@VWILDMNOMTM

oNnNEL@POAOM

3) ORGANIZED AS AN 8 x 32 3IT FILES

EVEN

ADD

Qoo

RESSES AQDRESSES

-
[R IRV-W--N o Ry))

MOST LEAST
SIGNIF ICANT SICGNIFTICANT
%QRO WORD

C) HIGHER AODRESSES ACCESSED AS A; LOWER AOORESSES AS 8

\
-

j VEN |
| |

l i
|]

|
| |

|

-

[(9t0)) i
X i L |
: | | !
! |

Instruction File

AP-101S Space Shuttle GPC

CPY PAGES (CPU1,CPU2,CPU3)

ing at an even or odd address, the left mux again chooses its even
or odd input, respectively, and the right mux the complementary in-
put, odd or even, respectively. Figure 136 on page 264 shows how the
l6-bit instruction AAFF is output from even and odd locations, and
Figure 137 on page 264 shows the 32-bit instruction AAAA FFFF being
output from even and odd locations.

11.2.1.2 Effactive Address Unit

The SA-unit decodes the instruction and provides this decodad version
to the Execution unit. The .-EA-unit also handles the generation of
the operand addresses and prefetches the operands for the EX-unit.
Operands or addresses can be provided by the instruction as immediate
data, or may need to be calculated by adding any combination 0f the
following:

1. Immediate data

2. Contents of a base register or memory location
3. Contents of an index register ‘

4. Displacement.

The EA-unit and I-unit data flows are shown in Figure 138 on page
265. Instructions sent from the I-unit enter two logic sections in
the EA-unit. In the Execution Operation Decode section, the in-
struction is decoded, convertad into 3n 8-bit code, and sant to the
EX Operation Code File for the EX-unit to access when eaxacuting an
ENDOP 1:256-way branch issued by the microcode. The EA Seauencer and
Controls section generates “he controi signals needed for the ZA-alU
and its associated logic to compute the loyical addressas of the op-
erands and to prefetch those operands when necessary.

To compute operand addresses, the EA Sequencer and Controls sectian
first determines what type of addressing is used in the instruction.
The EA-unit then fetches the contents of any base or index register
or memory location (indirect addressing) specified and selects from
the instruction any displacement or immediate data for input to the
EA-ALU. The EA-unit calculates the address of the operands by sum-
ming registear ar memory contents, immediate data and displacement sas
indicated by the type of addressing.
[

The E£A-unit places the results of its calculations i%to the ZA-A
register, then sends them ¢to the Internal Operand File. General
register addressas are sat up sy the EA-unit for ussa 5y the EX-unict
as required for the instruction. If an instruction requires an op-
erand from memory, that operand is fetched and placed in the Memory
Operand File by the EA-unit. The operands for the instruction have
thus been prefetched into one of two files (internal or memory), and
the EA-unit controls which of these files will be provided to the
EX-unit.

Low Level Functional Description 263

CPU PAGES (CPU1,CPU2,CPU3)

A) AT AN EVEN ADDRESS 8) AT AN 00O AQDRESS
EVEN Q0o EVEN 000
AQDRESSES . ADORESSES ADDRESSES ACORESSES
E ! F £ i
¢ ! 0 =
A I] A]
al J 3 3 SAET !
5 AAES : 7 5 i !
4 5 4 i |
2 3 2 |
] ! 1 0 |

Figure 13§4.

A) AT AN ZYEN AQDRES3

Accessing a 16-Bit Instruction

3) AT AN QDD ADORE3S

EVEN ooo EVEN (ols]s]
ADQRESSES AODRESSES : AQBRESSES AQORESSES
E F £ |
c 0 ¢ |
A 3 A |
8 LS -} croc q 8 !
[| 7 6 [t) |
4 . S 3 ; . St .
2 | 13 2 1
3 ! L q L | :]
|
’ | i* b4 l' ' | v
S\ i3y mUR\ i}
' ' y b
EY-Y.Y SEFF AAAA FrEFRE

Figure 137.

264 AP-101

Accessing a 32-Bit Instruction

S Space Shuttle GPC

—~QQunSNowom

U MINR WO T

(CPU1,CPU2,CPU3)

CPU PAGES

INA
NOTLInYLSNE

gegsaaes

g
8
s23zazzz

$ouy
A Y]

T

SO0V Al
Ty a0 'm

SN0 Nuyyw)

.
'Ol vnum pop

L2 B LELEET]

9§ wa
ROT LY pi ey

/SSROUY
IALD39.41

HI13
zo:u;:mmzn

i
e virg oy | TV OV §

——————.
VIO 59 m ey

hregeg
L2723 B |

we[| L

ol
T

I

L0 Y

- A

EA-Unit Data Flow Diagram

Figure 138.

265

Low Level Functional Description

3

CPU PAGES (CPU1,CPU2,CPU3)

11.2.1.3 Execution Unit

. The Execution unit contains all the logic needed to perform 16- or
. 2-bit fixed point operations and 32-, 40-, or 48-bit floating point
operations. Microcode provides the control signals for the hardware
in this unit and is contained in an 8K x 72 Programmable Read Only
Memory (PROM). Thirty-two x 8-bit Expansion PROMs are used to mini-
mize the width of the microword while still allowing multiple control
signals to the hardware. Five bits in the microword addréss one of
the 32 locations in one or more of the Expansion PROMs to provide a
16— or 264-bit field of control signals. :

The CPU local store (LS) consists . of two duplicate 256 x 1é-bit banks
of registers which are organized as 32 sectors (16 CPU, 16 constant)
of 16 registers each. The general purpose registers are located in
one (1750) or two (MMP) of these sectors, and in MMP another sector
is used for the floating-point register set. The remaining sectors
ar2 used for taemporary storage of partial results or contain con-
stants wnich are loaded from the constant prom during machine recat
and are accessed by the microcode for certain computations. There
are two identical LS banks, a left LS and a right LS arranged as a
dual-port locsl store. To the macroprogrammer, the local store ap-
pears as one set of general purpose registers: but the two halves may
be read independently by the microcoder so that the contents of two
indapendent registers may be used in the same machine cycle. This
allows simple operations, such as add or subtract, involving two
registers to be completed in one 250 ns machine cycle. When writing
to local store, both the left and right halves are written into at
. e same locations to keep the contents of the two sides identical.

3ince btoth the EX and EA-units may need to access local store durng
“he same machine cycie, orovision has been made for iocal store blle}
se time- shared. “In a 250 ns machine cycle, the SX-unit reads local
store during the first 75 ns, the EA-unit reads LS during the second
75 ns, and the EX-unit writes to local store during the last 100 ns
of the cycle. This requires the EX-unit to perform its computations
in the second 75 ns period while the EA is accessing local store.
The EA-unit performs its computations in the last 100 ns of the cycle
Wwhile the EX-unit is Wwriting to local store. This timing is shown
in Figure 139 on page 267.

The EX-unit data flow is shown in Figure 140 on page 268. A 36-bit
Fraction ALU handles computations involving fixed Point numbers and
Zhe mantissa portion of loating point numbers. The 3-hi%* Exponont
ALU calculates *he axponent in floating point azerations and{is used
35 3 counter in it2rative aperations. In addition, *he Exponent ALU
can be usad 3as an 2¥tension Af the Fraction ALU to provide an axpanded
Jata Tlow (40 bLits! for some Extended Floating Point operations in
the MIL-5TD-1750A architecture. ‘ ‘

Input to the Fraction ALU can come from local store, the FA, FB, or
FC registers, and the internal data bus where data from the Internal
and Memory Operand Files and from EX-unit memory reads is placed.

ovision is made for ALU results to be shifted. At the output of

266 AP-101S Space Shuttle GPC

¥

CPU _PAGES (CPU1,CPU2,CPU3)

the ALU, the Y Mux is capable of passing data directly or shifting
left 1, right 2, left 8, right 8, 16~bit word swaps, 8-bit byte swaps,
or setting up for I/0. Data from the output bus may be sent to local
store, the FA, FB, and FC input registers, and the FD register. The
FD register is dedicated to holding data which will be stored in
memory.

11.2.1.4 Typical Instruction Execution

The following example will illustrate the roles of the EA and
EX-units in the execution of a typical instruction. The instruction
A (add) of MMP is a 32-bit integer add using the base-relative indexed
addressing mode (contents of base register + the displacement (bits
21 - 31 of the instruction) + contents of index register (shifted left

1 for a fullword alignment) = address of the second operand). Rl is
the register containing the first operand, D2 is the displacement,
A2 is the index register, and 32 is the base register. The raesulrt

of the add is stored in R1!.

< 250 ns . >
|

| X READ LS

i

EA READ LS

EX WRITE LS

<

75 ns

> <~—75 ns > < 100 ns——m™>

EX COMPUTE !

EA COMPUTE l

Figure 139, Time-Sharing of Local Store

Low Level Functional Description 267

(CPU1.CPU2,CPU3)

CPU PAGES

$52-9521)
$52°0511)
I+ R g4]

[3240

S

<8 - s
“iiwn v3 ot [T}
912-$12vD
‘I'll\lllm TMM\"I— X _ .Ax] .
vivo Avowm Z5 VI oIt
L7 121139 jnizvd siva] wrs . B
»IZ-CITYD "I Jeer-1tivy 935 9x3 Mperd 3520
eng ww A 1€ “n. [] . /05T Q bed
® -y 222 TR
ve B0 P v 22 /9 Sad I
.H: vz be vd
Sule laniorisatzagy 1 eIIvY Y -
-4 W01 tax3’ Bt)
s21-121vd * 9" R SO
ol ——
]
149
!
niw
+2233 / tu3moax3 \
”" _—ai\/!-w
92233 4 %2233 °
18 13 e 17
-] ¢ .
°
ﬂﬂi?'" —— * ¥Ils)
wmﬂ.q«.b.umh 11n3-x3 ° S
L 4 k
S P, v
0 »
61233 R K.JI35] 7z
Pn.uu — _ v-u) _
~‘||GS«H 0«
2. o — 2zt r
4
ne ﬂuuunﬁ 102 Ry -pMITYY - ° oﬂ!
e ooo! [M3A3 B12-0121) oo} oz | —. " - e s T
- onZ-6T2vI rhZ-2rv] | ezz-B22v] _—_ EM KRGS
R - 5 oCTe "
sci-mivd | fee = 902 | Fouroa 2t = 952 R
— $1-d | S...-m_ rzz-vzevd| SV -
' w wcz-$c2v) wz-teevd aw mon
“ﬂ —— - “ . :-T.
SNYIS 1roisen)
tz2v) |, _,:.2
I .022v) _17\~.m - oy -
- - . c
;...:W m..oﬂr,filiil o w
< ~ T a1 $— . <G viva Ni TNy IiMl
.hl‘l
S K] Sl

eCi-ti o

Unit Data Flow Diagranm.

Execution

140.

Figure

AP-101S Space Shuttle GPC

2638

CPUY PAGES (CPU1,CPU2,CPU3)

Instruction: A R1,D2(X2,B2)

EA-Unit

° Decodes instruction and places an 8-bit value of x'AO0' in the EYX
Operation Code File to be used as a vector for the 1:256-way

branch by the EX at ENDOP. This is because the RS format add
instruction begins at microcode location x'02A0"'.

® Fetches the contents of B2 and adds this to D2, storing the result
(the Preliminary Effective Addres;®) in the EA-A register.

° Fetches the contents of X2, shifts these contents left 1 and adds
them to the contents of the EA-A register, storing the result
(the Effective Address) in the EA-A register.

U Fetches the second operand from the memory address given by the
contents of the EA-A reqg and places i+ in the Memory Operand File

° Selects Rl (instruction bits 5-7) as the left local store regis-
ter address and salects the contents of the Memory Operand fila
rather than the Internal QJperand file to be placed oan the

Internal In Data Bus, or INBUS, when the ENABLE OPERAND signal
from the EX-unit goes high.

EX-Unit
° Selects the left local stoée input for the fraction AI mux and
the INBUS input for the fraction ALU BI mux. The INBUS contains
contents of Memory Operand file by default (s5tath3 must he zern).
. Adds operands

° Outputs operands directly (no shifting) at Y Mux to Y-Bus

o Writes data from Y-Bus to both left and right local store using
Rl as the address of the register to be written into.

11.2.1.5 cConflicts and Hazards

Several fauits are 3ssociateq With the operation af 3 nipelined ma-
cChine: {
[l
|

l. Register Conflicts
2. Operand Conflicts

3. I-Unit Hazard (Store Within Range)

Low Level Functional Description 269

i

CPY PAGES (CPU1,CPU2,CPU3)

The CPU contains the logic necessary to detect these conflicts and
take appropriate action while minimizing any performance impacts.
These conflicts are explained below. ’

egister Conflicts: A register conflict occurs when the EX-unit
modifies the contents of a register which will be used in the EA
calculation of any of the next three instructions. llhen a registe~
conflict is detected, the EA must wait until the EX-unit has coum-
pleted its register store, then start again using the new contents=
of the register.

Operand Conflicts: An operand conflict occurs when the EX-unit will
modify the contents af 3 mermory lacstion whose contants will be pra-
fetched for any of the next three instructions. When an operand
conflict is detected, the EA-unit must wait until the EX-unit has
completed storing into the memory location before it can access that
location.

I-Unit Hazard (Store Within Range): An I-unit hazard occurs when the
ZX-un1t modifies 3 memory .ocation Wwhich miy have been pratetched by
the Instruction unit. When this occurs, the entire pipeline must be
purged 3nd restarted with the instruction following the store.

270 AP-101S Space Shuttle GPC

11.2.2 Memory Management Unit Funectional Dascription

The AP-101S contains a two page Memory Management Unit (MMU) which
incorporates numerous functions in addition to management of main
memory. The MMU flow diagrams are shown in Figure 141 on gpage 272
and Figure 142 on page 273. Included among the diverse tasks per-—
formed by the MMU are the following functions:

1. The MMU arbitrates and controls the timing and sequencing of the
HBUS.

2. The MMU controls all timing and sequencing to the mainstore in
the AP-i01S compurter.

3. The MMU contains the address expansinn logic for the system. The
address expansion mechanisms are architecturally defined and are
different for each architecture. The MMU accommodates either
under external control.

4. The MMU is responsible for detecting, capturing and posting mom-—
ory related faults. These faul-s vary according to architecture,
system configuration and memory requestor.

5. The MMU directs I/0 commands to the proper system element via
designate generation.

6. The MMU supports testability by:

a. Providing various diagnostic modes of operation under control
of the MMU mode register.

h. ?roviding saveral sarial scan paths.

c. Providing saveral II0 (Internal I1/0) commands which nake
various MMU registers accessible to the diagnostic program-
mer.

d. Further identifying faults detected by the MMU Memory Fault
Extension Register (MFER).

e. Providing an HBUS arbiter port for the tester.

11.2.2.1 MMU Clock Ganeration

S

The MMU generates a3 40 MHz clock common to all the pages %that are
attached to the HBUS and receives 3 time 9 sync puise from the CPY=3
page. From these two signals, a series of 10 pulses, each 50 ns in
Wwidth is created. The 10 clocks are labeled TO through T9 with the
newly created T9 corresponding to the synec time 9. The MMU clocks
are illustrated in Figure 143 on page 274.

Low Level Functional Description 271

MEMORY MANAGEMENT UNIT PAGES (MMUl, MMU2)

.Figure 141, MMUA Flow figure

272 AP-101S Space Shuttle GPC

e

MEMORY MANAGEMENT UNIT PAGES (MMU1l, MMU2)

Figure 142, MMUB Flow Diagram

Low Level Functional Description 273

¢y a

MEMORY MANAGEMENT UNIT PAGES (MMU1l, MMU2)

The MMU also contains a 24 MHZ oscillator for the 1553 page in the
1750 mode. The oscillator is used to generate 12 MHZ and 24 MHZ clock
for the 1553 Page. :

11.2.2.2 MMU Reset Logic

When an Inhibit Main Store (IMS) is generated, a system reset is js-
sued on the MMU,. The Interrupt page generates an IMS pending signal
shortly before issuing an IMS. -When this signal is active, the MMU
5tops all HBUS ac+tivity. “hen IMS becomes active, the MMU rasets
itself and 250 ns later starts all activity again. At this point,
any request to the arbiters will be acknowledged.

11.2.2.3 M™Mode Control

The MMU supports several different modes of operation. To change
these modes, the user must issue the internai I/0 (I1I0) command of

+40 WHz T LT
SYNC T9 J ' L* l

< 250 > |

+TO —

+T1 —e

+T2 ’ [
+T3 | L
+T4 : L
+T5 1

+T7 : I
- -
+T3 : ‘ J L

Figure 143, MMU Clocks

274 AP-101S Space Shuttle GPC

MEMORY MANAGEMENT UNIT PAGES (MMU1, MMU2)

X'9407°"'. To read the current mode of operation, The II0 code of
X'140B' ‘can be used. There are 10 functions defined by the mode
register (Figure 144 on page 275). : »

Figure 164, MMU Mode Register

WRITE| READ

FUNCTION BIT BIT
INHIBIT DMA'S 06 22
DISABLE STORAGE ERRORS .07 23
BCE DISABLE | 08 26
SPECIAL STORE PROTECT 09 25
TRANSMIT DISABLE 10 26
SYSTEM IPL 11 27
PASSTHRU CMOS 12 28
SYNDROME/CHECK BIT MODE 13 29
CODE 1IDO 14 - 30
SCRUB DISABLE 15 31

11.2.2.4 Bus Protocol

The Memory Management Unit (MMU) transfers data tetween thea central
Processor and the 0P through +*he HBUS. This is a high-speed syn-
chronous bus developed G0 transfer memory data at high rates of
speed.

11.2.2.5 Memory Address Expansion

The MMU handles all memory address expansion requirements for the;
AP-101S computer. The general functions performed by the MMU address
expansion logic are:

1. A 20-bit Advanced Programmable Testar (APT) address| is accommo=-
dated on the lé-bit HBUS address bus !

-

2. Memory addressing for 512K halfwords (20-bit) is provided.

3. Either halfword (16-bit) or fullword (32-bit) accesses are bér-f
mitted during a single memory cvycle.

i

4. No boundary constraints are imposed on fullword accesses.

Low Level Functional Description 275

v &

MEMORY MANAGEMENT UNIT PAGES (MMU1l, MMU2)

5. The ability to bypass the address expansion logic is provided.

6. Separate address expansion mechanisms are provided for each ar-
chitecture. i

11.2.2.6 Address Interfaces
11.2.2.6.1 IOP Interface

The IOP in the AP-101S computer always provides a pPhysical 18-bit
address on the HBUS.

11.2.2.6.2 cPU

The CPU passes a l6-bit logical address to the MMU via the HBUS. This
address and all requestor generated HBUS tag bits are passed on the
ABUS during any CPU acknowiedge cycle. The CPU unit* sourcing this
address is determined by the particular acknowledge that was granted.
During the address cycle, the lé6-bit logical address is selectad into
the MMU address flow, and must be expanded into a 20-bit physical
address (unless the operation type bits specify "no map™) in the 1750
architecture or a 19-bit physical address in the MMP architecture.

a.2.2.6.3 Avionics Programmable Testar (APT)

dhen an SDI (APT) acknowledge is grantea, 3 20-bit physical address
i5 passed to the MMU. The low order 16 bits are passed aover the HBUS
via normal HBUS protocol. The high order four bits are serially
scanned into a holding register on MMUl at the same time that the
testers serial interface logic (refer to the SDI description) scans
in the HBUS Simulator register on the interrupt Ppage. During the SDI
ACK, the high four bits and the low 16 bits are concatenated and se-
lected into the MMU address flow. This 20-bit physical address al-
Ways bypasses the address expansion logic.

11.2.2.7 Address Expansion Logic

The requirement to support single cvycle memory accesses for
doublewords on any boundary based on a single address that is passed
to the MMU dictates the following MMU hardware support:

!~ Address adder

276 AP-101S Space Shuttle GPC

S4HH coo‘olL HooLno

SHH 000'+Z sSLOLdaY ANIHHND . S4dHH ocza SHH 000’9 ‘NDis3a ER=RE
H3aiNNnoo HOHY3 Lios
435avS
ceee-n FHNLYHIdWNE], Jig
) SAvoIN dniiovyg
AYS I1avAonIy 00 I79VIDHYHOIY 9 AH341vg
LOL 2L 4810 . 840> oy SdOM 000} = asads

HNHOS AHOWIW

HOTPR TS L e SlEas S |
OILOIHHOD aNY .
NOLS315G HouH3 sliga vivag o1 . %3%» Siia vivasr auom 37vH
:)
_ o m.% . 550759/ N\ok)
. : _ svagt
IAIHOYY €9 oz10 S.M M+01 500 s 99Z :sowo FNHE Y
S8 81E IAY 3 sai 41t sa1 +9 LHDIIAN
S11VYM 99 :13QO0VI 433 ‘ , : | »
Y A DTSl IAVS S1LvA o82 . S11VM o099 H3..0d

iy S)4 I1n0e
dot ndo aA0Vds doi/nd9 3IoVvdsS

2.1 SHUTTLE INSTRUCTION SET

The AP-101S systam structurs uncompassaes the functional oparation of main storage,
the central pracaessing unit (CPU), &nd program=controlled /0 facilitias.

2.1.1 JInformation Formsts

The system transmits information batween main storage and the CPU in units of 16
bits, or in integar multiple of 16 bits. Each 1é-bit unit of information is callad
a halfword. Six arror corruction bits and three voted storaga protection bits are
also associated with each halfword for the AP-101S but later references in this
manual to the siza of data fialds exclude these bits. The AP-101S/G has two storage
protact bits per halfword.)

Halfuwords may ba handled separately or in pairs. A fullword is & group of tuo
consacutive halfuwords. Both halfword and fullword instructions and oparands are
used. Their location is slways specified by the addrass of the luftmost halfuword
(laftmost halfword is tha numaerically smallest address). Tha instruction length is
designatud implicitly in every instruction; the opurand langth is also implicit.

] Within any f{instruction and opaerand format, the bits making up thae format arae

consecutively numbered frum left to right, starting with the number 0, &3 shown in
Figure 2-1. ’ : '

Haitword

S N O N A N O O O O O) :

0 15

Fullword

Lttt e rrrrrr et r b rrrrr ety
o - 15 16 .)

il

o
(.
[
(%
(69]
(gn]
o
|
|

l

-‘...(2 Addreasing

Halfword locations in storzge are consecutively numbered starting with 0. Each
number |3 considered the address of tha corrasponding halfword. The addressing
technique usas a 19-bit binary address to & wmaximum of 2!? halfwoerd addresses. This
set of main storage addrasses includes some locations resarved for special purposes,
such as program status words; conssquently, these special locations should not be
ussd for any purpose not implicitly defined.

2.1.3 Information Positigning

Unlike previous versions of the AP-101 computer, the AP-101S does not require eithar
fullword instructions or fullword/doubleword oparands to ba locatad in wmain storage
on even boundarias.

2.2 CENTRAL PROCESSING UNIT

The central processing unit (CPU) contains facilitias for addressing main etorage,
’ featching or storing information, for arithmetic snd logical processing o data,
t... sequencing finstructiens in the desired order, and for {nitiating the
coi nication between storage and extarnal deices. ' ‘

The control section guldes the CPU through the functions necessary to exscute the
program.

2.2.1 Prograsm Addressable Registsry

Two sets of aight fixed point genersl registers and one set of wight floating point
registers are under explicit programs controsl. Ths contents of one or more of these
registars (32 bits) participate in mast CPU operations. Associsted with each of the
fixed point ragisters {is & 4-blt addressing extension raglster (Data Sactor
Exteansion or DSE), ths use of which is described below in Extended Addraessing.

Conceptually, an additional doubleword ststus register, called the program status
word (PSW), is the focal point for machine status. The contents of the PSU are
updated during wach {instruction. Conssquently, tha PSH reflacts currant machine
status following aevery instruction. The PSW participatas implicitly in status
switching, branching operations, and address calculations. Condi “fon codes
rasulting from &n instruction are slso part of the PSUW.

In addition to the PSH and the gan«rsl and floating point registers, the CPU #lso
¢ tains working registurs used for storage sddressing, storage buffaring, shift and
+ .ration counting, and cperand storage. Thesa registers are of no direct concern
t%“ e programmer and are 1ot described harain.

—_—

‘ - ~ gp03s €28

The contants of the PSW spucify which of the two sats of general ragisters is in
current use. Only the contuents of the selectaed genaral ragister sat can participate
in arithmatic operations and the contents of unsalectud sats of genaral registers

‘{ ~ cannot bae sltered by a program. An altarnate set of general ragisters can bae

salected by changing thae PSUW. Only one sat of the fixad point, genaral-purpose
registers and tha floating point ragisters sre available to the prograam at any onea

tima. -

General register contents can be usad interchangeably as epaerands for arithmetic,
logical, and shifting oparations, or as bass and indax registers for ralative
addressing. Each set of punural registers is numbared from O through 7 and is
addressed as shown in Figure 2=2. .

General Register Fuanction

Register

Number Operand Base Index
0 000 00 None
1l 001 0l 001
2 010 10 010
3 01l ll or None' 011
4 100 A 100
H 101 ~101
6 110 110
7 111 111

X1l = Ragister 3 for $RS; none for RS

Figure 2-2. Ganaral Ragister Addre:ﬁes

Note that general registars ¢ through 7 cannot contain base addraessas and that
general registar 0 cannot contain an index.

For addressing data, ganarsl registaers 0-3 can be augmented by é-bit Data Sector
Extansion (DSE) registers or by tha DSR in the PSW to address beyond 16-bit
capabilitias. Thaere are 16 DSEs, one for gach of thae aight ganaral-purposa
registars in each of the two sets of ganaral tagistars.

For soma opaerations, & pair of guneral registers is linked to form a 66-bit
doublaword register. The wost significant half of a doubleword oparand is containad
in the specified register; the least significant half of tha doublewerd is in the
naxt higher-numbarad ragistar (determinaed by Modulo 8 asddition of ona (1) to thae
specifiaed registar). HNota: I1f Rug ? is spacifiaed, the least significant half of
the double word operand is contained in Rag. 0.

W
(ge
€
()
c3
gn]
13
«w

2.2(Eixed Point Data Reprassentation

Data reprasentation is Tractionsl, with negative numbers representad in tuos
complement form. A halfword opsrand i3 15 bits plus sign, a fullword operand is 31
bits plus sign, and & doubleword sparsnd is 63 bits plus sign, as shown in Figure
2-3.

Fixed-Point Msifword Opersnd

H Fraction

TR NN
[»J} 18

FixedPoint Fullwerd Operand

l|||l|||||l||lllllllllllllllll
01 . 3

Fixed-Point Doubleword Operand

Figure 2-3. Fixed Point Opersnd Formats

]

In fractional data ruprﬁs-ntifiuna the binary point is immediataly to tha right of
the sign. '

2.2.3 Instryction Formats

The length of an instruction format can be &ither one or two halfwords. Long format
instructions provide maximum rangas snd extanded flaxibility for addressing storage
operands. Short instructions sre used to (1) specity register-to-registar
operations, and (2) specify storsge operands in cases where a small displacument is
sufficient and completa address soditication capability is not required.

Instruction formats overlap. Programs are written so that, in wmany instances, any
given operation can be codad using either & halfuord or a fulluord instruction. In
such cases, maximum use of halfuword Instructions results in increased storage
afficiency and perforsancs.

The ¢three basic {instruction furmats ars a3 shown In Figure 2-4. Halfword
? <tructions are automatically selected by the assambler unluss otherwise spacified
L+ tha programmer.

£
i

2-4

90035 C30

RR Format
=)
Op R1 P R2 .
1 11 AR AR AL .
0 4 5 7 8 11123 15 .
SRS Format -
o o Dise’ 8 *Displs ¢ the farm 111XXX li
| (I | | | { | ‘ | | (22~ mso T m are not valid.
+] 4 §- 7 8 13 14 15
RS Pormat
. o A PP
Oo R1 Plm 82 Address Specification
| IR ANRRARRRES | I T O T O I IO 11
0 4 5 7 8 on 12 13 14 15 16 : 11

Figure 2-4. Basic Instruction Formats

The fialds within the instruction formats usually are used as dascribed below. The

exceptions

instructions.

Op

R1

R2

B2

Disp

opPX

AM

ard dascribed in conjunction wWith thae individual formats and

This S~bit field defines an operation, or tha clasxs of operation, to
ba performed Yy tF- TPU.

This 3-bit fiwla designates the register containing the first operand.
Excapt for operstions which <er main storage, tha rasult usually
replacas tha first oparand. -

This 3~bit fiald appears only iﬁ‘tha RR format. It is used to spaci fy
a genaral register containing wither the sacond operand or the addrass
of tha second cpurand.

This 2-bit fiuld specifies the register containing the base sddress.
In halfword SRS format instructions, this 6-bit field is "callad the
di splacement. For the $RS format, tha displacemant is added to the
bsse addruss spacified by the B fiwld to obtain & storege addrass.

This bit is an extension of the OP fiald.

This field dasignates ona of tuo fullword format addressing options.

2=3

Address The sscond halfuword of a fulluord iﬂstruéticn {s specified as aither
(pecifi= extanded or indexed sddressing. :
cation

See tha Effective Address Generation Summary Chart, page 11-1.

2.2.4 RR Formst Instryctiona

The RR format instructions (Figure 2-5) permit the specification of operations that
use two ganeral registers.

Op R1 o1 n2
1 1.t popogrpatvjogxt o1t
0 e« 5 1 8 112 13 15

Figure 2-5. The RR Instruction Formatys

The operation normally usas as oﬁurtnds tha contents of two general registers. The

R2 field specifias the sucond operand whilae the R1 specifias the first operand. Tha
‘yult of the cperation usually replaces the tirst cperand. '

{ .

2.2.5 SRS Format Instructiong

The SRS instruction format (Figure 2-6) {s & coapression of tha RS format. It
provides base plus displacement storsge addressing.

* Displacerments of the form

Ov R1 Oiswo® 82 111XXX are not valid.
L 1.t [1
0 4 3 7 8 13 1418

82 Aegister Containirny Buse

00 Gerwrsl Registir 0

o1 General Regiiter 1

10 Genersl Regracar 2

" Genarsl Register 3

Figure 2-é. SRS Instruction Foruast

2-é

-

n3g €32

(g

' ' 9

| - . Tha Rl fiald spacifias the first cparand register address. The 19-bit effactive
E\ address (EA) of tha sacond oparand is davelopaud as follows:

Stap 1 First ¢the positive intager contained in the gisplaccmunt field is
added to the contents of the pasa contained in the genaral raegister
spacified by B2. .

When addrassing halfword oparands, the least significant bit of the
displecement fisld (instruction bit 13) is aligned with base register
bit 15. The 1é=bit result is the sum of the base and the
displacement, aligned as shown in Figure 2-7.

When addrassing fullword operands using the SRS format, the least
significant bit of the displacement field is alignad with base
register bit 14 &3 shown in Figure 2-8. C

Unlike previous versions of this architecture, bit 15 of & base
register is - significant when addressing fullword data. Fullword
storagae oparands may now be located on odd sddress boundariaes.
Programs which utilize this feature will not be downward compatibla.

Step 2 Tha 16-bit rasult of the addition of the base end displacement is
expanded (sae Expsndad Addrassing) to a 19-bit affactive address (EA),
and this is the address of the sacond cperand.

ll"'"Jll";!ll‘lék\t\\\\%\\\k\\\\\\\\\\\\\\\&amlw

,.
@
-
S

0 15 16 N
" Oisp Haltword Displacement
ojofojojoyojotojojol { 1t 1 1
1] 9 10 15
Basa + Disp. : 16-8it Etfective Address
[T T K T O IS I I
0 . 15

\ The low-order haif of the general register containing
the base does not partuicipate in SRS addressing.

Figura 2-7. SRS Halfword Addraessing

- 90038 (33

0 1518

Diw 0 Fuliword Disglscement
ojojojojojojojoto] | 1 1 1 |
) 8 9 14 18
A)
Basa ¢ Diw0 16 Bit Effective Addres
[T T I O T IO T I O I |
0 15

\ Tha low crder hait of the general register contaning
N the buse dous not participate in SRS sddresting.

Flgur.v2~8. SRS Fulluord Addressing

§

Except for stors inastructions, ths result of oparation batweun the first cpsrand
(the contants of genural register R1) and the second cperand (the conteants of the
EA) replaces the tirst opersnd for SRS format operations. The first operand
replacas the sscond opearand for store instructions.

2.2.6 SI Ipatructions

Direct initislization, modification, and testing of main storsge is possible through
the use of an imwediste data halfword appended to an SRS finstruction. Ssa Figure
2-9.

. Op oPX Oiw a2 irrwnediste Dsta

| L e | OO A O O T O W
0 45 18 13 14 1516 , n
*Displacamants of the form 111XXX sre nut valid. '

Figure 2-9. $I Instructions

(2 address of the halfword second operand s developed in the normal manner for SRS
instructions using halfword addressing. Except for test instructions, the result of
/v operation betwaen the halfword second oparand and the immediate data replaces

q0325 3k

(4}

the sacond operand. The second operand is not altered for tast instructions. The
first operand is naever altersd for SI instructions. .

2.2.7 RI Instructions .

Using an immediate data halfword appended to an RR instruction (Figure 2-10) paermits
direct initialization, modification, and te3ting of the, most significant 16 bits
contained in & ganaral register. ’

[¢]
P

Oo oPX o n2 immediate Data’
| 111 1 1 1111110 {1 [T O T O L | LIS N O I I
0 4 5 78 111213 1516 , 3

Figure 2-10. RI Instructions

Excapt for tast instructions, the result of the oparstion batwaen the sacond operand
and tha immedists data ruplaces tha second operand. Tha sacond operand is not
altured for test instructions. The jmmediate data first oparsnd is never altered
for RI instructions.

2.2.8 RS Format Instructions

Therae are two major classas of RS instructions, extendad and indaxad addressing
modes, diffaring in the technigues usad to specify the second oparand. Sew Figure
2-11. :

- | 90038 035

o
Ov R Pl 82 Address Sowcification
| 1t 11 I ERAERARIA | [N T 1 T T O I O I e s
(] 4 § 78 11 1213 14 18 18 b § |
Au
Extondaed : 0 Displacement
‘ L T O T T O OO0 0 I o
18 3
]
Indaxed : 1 X Al Displacanent
{ 1 LI T O O T o |
18 181920 1 3N

Figure 2=11. KS Instruction Formats

Extended addressing is speucified when RS vfomat. bit 13 (AM) equals 0. This
? ‘ressing wode provides & full lé-bit halfword displacument. The basse and
¢ splacement are aligned as shown in Figure 2-12 when base addressing is performad.

i

1N T OO OO I A o

Bam
|

IR T U O O I T A o
0 : 18

Figure 2-12. Displacswunt Alignment for Extended Addressing
Aside from the size snd slignwent of the displscement, RS extended addressing
differs from SRS addrassing in two ether respectr:

1. The alignmant of the displacement {3 the sasa whether addraessing
doublensrd, fullword or hslfword cperands.

2. When B2 equals 11, base sddressing is not performed. In this case, the
displacament is instead usad directly as the effective sddress.

2-10

-

RN

30036 €36

Indexad addressing is specified by RS format bit 13 (AM) squal to 1. This
addressing mode contains thras additional fiaelds. Normally, they contribute to the
effactive address genaration &3 followus:

X

IA

This 3-bit field specifies ona of seven genarsl registers containing
the index. Indexing 13 not performad whan X 1s wqual to 000. An
index is contained in tha upper halfword of & genarsl register. The
tndex s automatically aligned as jllustrated in Figure 2-13. For
additional {nformation on index-alignmant, sea gaction 14. Consistent
with the restrictions that apply to ragister usage snd indirect
addressing, genaral register contents can ba used interchangeaably as
either a basas or an indax or both. When indirect addraessing s
apecified, indaxing follows indirect addressing (postindexing).

This format bit, when a onae, specifies Indireét addressing. Indirect
sddressing is not perforaad when this bit is zero. In the instruction
descriptions, the symbol & denctus IA for tha assambler. :

This format bit, in conjunction with X and IA, specifies various
sddress wodes which are explained balow. In the instruction
descriptions, ghl symbol # danotas { for the assemblar. ‘

The development of the EA for'th. indexed moda Cincluding IC relative) of operand
addressing is explained in datail in the subsaguent staps:

1.

z.

Indaxed addressing is specifiud by RS format bit 13 CAM) equal to 1. This
sddrussing moda provides an’ 11-bit displacemant. The base and
displacement are aligned as shoun in Figura 2=164 when indexed addressing
is performed. .

The displacament is aligned so that bit 31 corresponds to base or index
bit 15 and displacument bit 21 corresponds to base or index bit 5. The
displacemant i3 sxpanded to 16 bits by appending five lesading zuros.

1¢ B2 is not equal to 11, the 16-bit base, containad in the higher order
helf of the specified register, 1s addaed to the aligned displacement.
This results in & preliminary effactive address ({PEA) whareby the PEA =
(8) + Displacement. -

I+ B2 is equal to 11, tha aligned displacament is added to zero. This
result is the preliminary «ffactiva &ddress (PEA) whaereby the
PEA=Displacamant. .

If the X field is all zeros, IA (bit 19) is & zerc and I (bit 20) is a
zaro, then the 16-bit result of Step 2 is added to the contents of the
updated instruction countar (IC) to form tha 16-bit EA whereby
EA=(updated) IC ¢ PEA. (This EA is then expandad to a 19-bit EA, as
explained in the Expanded Addressing saction, with the excaption that the
Branch Sactor Register (BSR) bits are used instead of the Data Sector
Ragistar (DSR bits).

‘I¢ the X field is all zeros, IA (bit 19) is a zero and I (bit 20) is a

one, tha 16-bit rasult of Step 2 is subtractad from the contents of the
updated 1C to form tha 16-bit EA whereby EA = (updated) IC - PEA. (This

2-11

ra Pt I

e

PEA

Haltword (Direct from Index Register
Bits 015

EA

& Haltword Index Alignment

15

Puilword (index Register Bia 0=15
Shiteed Lait 1)

EA

b Fullword Index Alignment

R T 10 A I I O O O I O
18
Index (Xg18) :
O O O T L O O O I |
15
PEA ¢
LN TN T O 1T I O
15
PEA
] | | I N O 1 T I
15
m‘x,_‘g)
0 I L O I I I I O £
15
. I IO O T O I O I I |
PEA
IS JO O T O A I
18
Index (Xg_y3)
{1 1 Lt 11 J1 1111 1oio
13 14 18
PEA ¢ Indsx
.1 5 L O O I O O A |

18

Doubile Word (Index Reyistsr Bits 0—15
“Shittd Lett 2

- & Doutis Word Indux Asignment

Figure 2-13.

2-12

Automatic Index Align.ucnt

. storage halfword.,

" Addressing section with the exception that the Branch

gpn3s €38

NIRRT
. Dispiacement - .
ofejojojol (t 1 1 r et
18 20 0 1
Base — :
T T T IO T I I e
0 S 15

Figure 2-164. Displacement Alignmant for Indexad Addressing

in the Expanded
Saector Ragister

(BSR) bits are usad instead of the Data Sector Register (DSR) bits.)

EA is then expanded to a 19-bit EA, as explained

If the X field is all 2zaros, IA (bit 19) is a one and I (bit 20) is a
zaro, then Indirect Addressing is purformed. Tha 16-bit result of Step 2
is expanded to a 19-bit address and is usad as thae address of a main
This halfword is then fetched and expanded to 19 bits
by using expanded addressing to form the EA. EAZMS (PEA). Functional
equivalency to preindaxing capability can be obtained through modification

of the base.

If tha X field is all zeros, IA (bit 19) is & one and I (bit 20} is a one,
Indirect Addressing is performed as describad in Step 5 with a fullword
main storaga pointer. Then, aftar the EA has been formed, storage
modification is sutomatically performed. Thae .indirect address is
contained in & fullword. A modifier is contained in bits 16 through 31.
An address is contained in bits 0 through 15. The modifier is added to
the address and the resulting modified address replaces bits 0 through 15
of tha indirect address word (sea .Figura 2-15). ’

Address Modifier

|||l|||ll|l|[|l!'lllllll[llllll

0

15 16 . 3

Modified Address = MS (PEA) =— MS (PEA) + MS (PEA + 1)

Figure 2-15. Tha Contents of Indirect Address Storage Modification Word

7.

1f the X fiaeld is not zeros, IA (bit 19) is & zarc and I (bit 20) is a
zero, the most significant 16 bits of the general ragistar spaciftied by
the X field are aligned, and then added to the l6-bit result of Step 2
(PEA) to form tha l6-bit EA (Sae Figurae 2-13). (This EA is then expanded
to a 19-bit EA, as explained in the Expandaed Addressing section.)

2-13

{

.

lo.

1¢ the X fisld is not all zuros, IA (bit 19) is a zero and I (it 20) is a
one, the most significant 16 bits of the general register specified by tha
X fisld are aligned, and then sdded to the 16-bit result of Stup 2 (PEA)
to form the lé-bit EA (sae Figure 2-13). (This EA is then expsndad to a
19-pit EA, a3 explained in the Expanded Addressing section.) (The
modifier {3 added to the sddress and the resulting modified sddress
replaces bits 0 through 15 of the indax registar after the EA is
determinad.) Figure 2-1§ 1llustrates tha sddress and wodifier format in
the indax rugister.

Adddress Modifier

|J|lll|l|l(||ll|||l||!l|!||!|l

o 15 18 . .o
Modified Address mo-xs'-ma-zs + X531

Figura 2=-16. Ths Contents of Indax Ragister X

1¢ the X fiald is not sll zeros, IA tbit 19) is @ ona and I (bit 20) is &
zero, Indirect Addressing (IA) uith postindexing is performed. The 16-bit
result of Step 2 is expanded to & 19-bit addruss and is used to fetch a
main storsge halfword. The index contained {in the genarsl register
specifiad by X 13 aligned and theén addud to the futched haltword to form
the 16-bit EA (see Figure 2-13). This EA is then expanded to & 19-bit EA
by using expandad sddressing. Functional aquivalancy ¢to preindaxing
capability can be obtained through modification of tha base.

If the X fleld is not sll zeros, IA (bit 19) is a one and I C(bit 20) is a
one, @#n indirect addreasing mode is defined using & 32-bit fullword
indirect address pointar us follows:

s. First, tha PEA from Step 2 wmust locate a fullword indirect sddress
pointer, with tha format as illustrated in Figure 2-17.

X (o]]
1 Address Raserved c glo BSY Dsv
rrrrrrrr v rt 1ty olatatlaln | 11 [
g 1 18 18 1920 21 2223 24 2728 31
Fisid Function
Xe Index Control
[Control to allow PSW modification .
Cg . Control BSV Usage
Cop Conrrol DSV Usage
BSV (Branch Sector Vector) Selectively replaces BSR in PSW
DSV (Data Sector Vector) Salectively replaces DSR in PSW

Figure 2-17. Fullwerd Indirect Address Pointer

2-14

.

gra3s Cul

b. If € (bit 21) squals 0, XC (bit 20) equsls 1, and the instruction is
not & branch type instruction, the 19-bit EA equals the 4&=-bit DSV
with tha 15-bit address field appended. When € (bit 21) equals 0, XC
(bit 20) equals 0, and the instruction is not a branch type
instruction, the 19-bit EA sauals the 15-bit sddress field added to
the index value in indexing register X with the result appendad to
the DSV. The current PSU's DSR is not changed.

If € (bit 21) equals 0 and the instruction is a branch type
instruction, the current PSW's BSR in conjunction with bits 0 through
15 of the fullword indirect address pointer will be used to form tha
branch address (BA). If XCs0, postindexing will occur. When C (bit
21) equals zere, CB and CD sre ruserved and should be set to zero.

c. If € Cbit 21) equals 1 and thae instruction is a branch type
fnstruction and tha branch is <taken, tha BSV and DSV fields
selectively replace the BSR and DSR fields in the current PSW, basad
on the CB and CD bit values as follows:

=3 S 3] Result
, to
0 0 Usa current PSW's BSR)Ior- the BA.

0 1 Replace the current PSW's DSR with the
‘ DSV. Form the BA normally.

b 0 ° Raplace the current PSW's BSR with the
BSV before foraming the BA.

1 1 Fi}st; replace the currtnt'PSH's DSR with
the DSV. Then, replace the currant PSU's
BSR with tha BSV bafore forming tha BA. -

d. When C (bit 21) equals 1 and XC (bit 20) equals 1, postindexing is
not paerformed. When C (bit 21) equals 1 and XC (bit 20) equals 0,
the BA calculation includes a final addition of the index value in
index registers X.

If C (bit 21) equals 1, XC equals 1, and the instruction is not &
branch, the 19-bit EA equals- the current PSW's DSR and the 15-bit
field appended. I1f XC=0, postindexing will eccur.

The results of indexed mode RS opcr;tions normslly replaca the first operand excapt
for store oparation where the first operand replaces the second operand. The second

operand is unalterad for nonatore oparations, and the first operand is unaltered for
store operation. ‘

2.2.9 Expended Addressing

Tha addressing philosophy accommodates $4K halfword addreasss since s full 16-bit
address {s provided. Extending the addressing range beyond 64K halfword locations

2-15

: | 90036 CLl
v to 512K halfuord locatiens is previded by utilizing PSH bits and Dsta Secter
!xt{ fon (DSE) registers. A
Expanding te 19 bits is achiaved by reslacing tha high-erder bit ef & l6-Lit addrass
with Qu.b ts, &8 shown in Figure 2-18. Dats sparand sddrus¥s&g % extunded to 19
bits ;ﬂé-mm s 4-bit Dsts Sectar Repister (DSR), & DSE, Jan twpliad DSR
Daker>, When the high—-srder bikt of & 16-bit dats addruss is ‘i\. 3 4=bit DSR (PSUW

]

bits 28 through 31) is sslected ts replace the high-srder bit When the high-order
bit of @ 1lé-bit dats register is ¢ and & base register is used to deturmine the
addrass, the é¢=bit DSE for that buss registar Is selected te reslasce the higher
order bit. Whan the high erder bit of @ lé=bit data addrass is @ 8, and "o bLuse
register I3 used, an implied DSR containing 0000 Is salected. Hote that ingirect
addressing locatas the indirect addruss pointer as I'f the pointer were & de‘a
operand. Second stage expansion ef the indirict address pointur usaes an {wplied DSR
of zero |f tha high erder bit ef tha 16-bit address is u’.‘" Brench addresses ares
alsc axtended to 19 bits. When the high~erder bit of & 16-bit branch address is & 1,
a 4=bit Branch Sectoer Register (BSR-PSU bits 28 theough 27) is selected to replace
the high-order bit. MWhan the high-aorder bit is & 8, an luplied B3R containing 0000
is selected.

AND NO BASE REGISTER 1S USED. TF THE HleW oRDER RIT OF THE K RIT ADDRESS IS @ AND A BASE

QEMSTER 1S USED, THEN TWE 4-BIT DSE Fog THAT Bhis REWSTER 15 SELECTED To fepuice
Wisy 0LDER BT

SSR
34-:7]

Y vy € xpermied 19-Git Branch Acdreas

| zmzz+o000 | [zzzz=osecan | TZZZYYYIYYYYYYYYYYY
s - 4 c_-‘
i e

€ apunong 198 EA Srench Adoreasy Expenson

Oow Cowrand Adorsssing Exjareion

Figurs 2-18. Expanded Addressing

2-16

Eoadl0 SIVF Mo 2 ;uofl)J

THZE

rainiy

n

'fﬁf‘ﬂ‘\\\{ﬁ’ Wil wer ga

Pictorially, main storage

g¢n35 Ch2

‘can be visualized as follows:

—
Im

8A, =0
or EA =0 \ EA =0 EA =0
EA,=0 DSE 80, 1,2 OSE 80, 1,2 DSE B0.1.2
No Base
Reg v A o1 . EA 1
PSA _ .
Opersting Frobiern Problemn . Problem Problem PROBLEM
Systermn & Deta Instruction . Dats Dsta DATA
Common Data Ares Ares © Ares Ares AREA
Pool
0 32K BSRA DSR 512K
PSW 24-27 PSW 2831

This permits efficient communication from tha problem program to tha operating
system, the praferred storage araes, (PSA) or a common data area.

It should ba cautioned that instructipn addrass incrementing or addrass calculations
used to form the EA are performad on thae low 16 bits only, and will not alter the

BSR, DSR, or DSE. The BSR or DSR may bae altered only via a PSW swap, special
{nstruction operations (SVC, LPS) - or by use of the indirect address pointer
described in this saction. The DSE registers are loaded by the LXA and LDM

instructions.

2.3 PROGRAM EXECUTION

The CPU program consists of instruction and control words specifying the operations
to be performed. This information residas in main storage and addressable registers
and may be opaerated on as data. Instruction axacution esntrol is as dafined under
the saction on Machina Status anc Gonaral System Oparation. Insert ¢tgrage Protaect
Bits, Load Program Status. Internal Control and Set System Mask instructions are
privilaegad instructions and can only ba exscutaed in the Supervisor Statae. Thae
Program Status Word determines the current state of the CPU and the Supaervisor Call
instruction can be used by the problem program to entar Supervisor State.

2.4 STORAGE PROTECTION FEATURES

The storage protaction feature pravents modification of specific main storage
locations. Any location which cculd, for example, contain constant data or program
instructions can ba selactively protected from Stora oparations without restricting
thae use of othar areas. Traps on store operations ¢to spacific data words can bae
inserted during program chaeckout. A privilegad instruction, Insert Storage Protect
Bits, is provided to sat/resat the protection bits associated with each halfuword of

2-17

'n~dh~‘sfor e, 'Afhhﬁdﬁfﬂ to ;%,n;zﬂﬁﬂa fla abF”&r" é%x;qﬁ%?
wld palt & 05

J ogram interrupt unless—id—is—prs
-+§ -b+§—4§+-*o—t.reﬂ”1n this casa, the store operation does not occcur.

2.4.1 Instruction Monitor Featury

The storage protection bits described can also be used tov flag an insdvertent
attempt to sxscutas, &3 instructions, data storaed in unprotected sreas. The feature
wWill ensure that no prugram will continue to executa data &s program instructions.
An attampt to exacuta an instruction word which is unprotectud will raesult in an
interrupt {f FSH bit 34 is & one. Tha feuature can be meskud by a System Mask Bit
(bit 34 of the PSN). During progrum checkout, this feature persits use of special

softuare to aid debugging.

An instructios Monitor differsnca is the state the affective address is laft in
following tha interrupt hsndling. In the AP-1015, the Instruction Countar is
incremented to point to the next instruction to be uxscuted. The AP=101S Instruction
Countar is nat incrementud snd is laft peinting to tha offending instruction.

2.5 MACHINE STATUS

~vstem status can ba altered by the occurraence of interrupts and by the program. A
do’ ‘eword rugister within the CPU contains & program status word (PSW) and is the
focul point for CPU and systam status conditions.

2.5.1 Program Status Mord

The program status word (PSW), contains the basic informatien requirad for proper
program exscution. The ¢4~bit PSW {ncludes the next instruction address, the
current condition coda, the carry and overflow indicators, the system mask for
interrupts, and othar fialds significant to CPU operations. 1In guneral, the PSW is
usad to control instruction sequuncing and to hold end indicats the status of tha
system in reletion to the progras currently being exscuted. The active or
controlling PSW {s callad the “current PSW™. By storing the current PSW during an
intarruption, the status of the CPU cun be presarvad for subsequent use. By loading
a4 new PSW or part of a PSW, the state of the CPU can be initislized or changad.
Figure 2-19 shows the PFSW format.

2-138

s,

. 96038 CL2

(.

Pictorially, main storag;'ean be visualized as follows:

oty b P

DSR,
instruction
described
instructions.

or DSE.
operations
in this

system, the preferred storage araa,

It should be cautioned that instructi
used to form the EA are performed on the
The BSR
(sve,
section.

or DSR may ba &
LPS) or by

use

(PSA) or & common data area.

a PSW

2.3 PROGRAM EXECUTION

on address incrementing or addrass calcu
low 16 bits only, and will
lteraed only via
of the indiraect
The DSE registers are loaded by the

not al
swap,

address

LXA a

BA =0
. or ‘ EA =0 b EA =0 . EA =0
' EAg=0 DSE 80, 1,2 OSE 80, 1,2 DSE 80.1.2
No Base
Reg v (TS . EA =1 v
PSA .
Opersting Probiem Probiem . Problem Problern PROBLEM
Systemn & Data Instruction . Date Dan DATA
Common Data Ares Ares © Ares Ares AREA
Poal
32K BSRA DSR 512K
PSW 24-27 PSW 2831
This permits efficient communication from tha problem program to thae operating

lations
ter the
special
pointer
nd LDH

The CPU program consists of instruction and control words specifying the operations

to be performed.
and may be cperated on as data.
the section on Machine Status anc Sonaral System Oparation.
Bits, Load Program Status, Internal Control and Set System Mask
privilegad instructions and can only ba exscuted
Program Status Word determines the current state

Instruction exacution control

in the. Supervisor Stata.
of tha CPU and the Supaervisor Call

instruction can be usad by the problem program to entaer Supervisor Stata.

This information residas in wain storage and addressable registers
is as dafinaed under
Insert Storage Protect
instructions are

Tha

storage

2.4 STORAGE PROTECTION FEATURES
The storage protection featura pravents modification of specific main
locations. Any location which ceculd, for examplu, contain constant data or program

instructions can be salaectively protacted from Store operations without restricting

tha use of other areas. Traps on store operations
inserted during program checkout. A privilaged instruction,
Bits, is provided to sat/resat the protaction

2-17

bits associated with

to spacific data words

can ba

Insert Storage Protect
each halfuord of

n~&ﬁ~ SfOféﬂC. clagb o

| Bpsuphing o store dits i o prticlisl focaling

w-qram interrupt,
-, ,h+ﬁ4—45+—*e—etfuf"1n this cause, the store operation dows not occur.

a

2.4.1 Jnstruction Monitor Featurs

The storage protecticn bits describad can also be used to flag an insdvertant
attempt to sxucute, a3 jnstructions, data stered in unprotectad sreas. The faature
will eansure thet no program will continua to exscuts data &s program instructions.
An attampt to execute an jnstruction word which is unprotactad will result in an
interrupt 1f FSH bit 34 is a one. The fusture csn be masksd by & Systum Mask Bit
(bit 34 of tha PSW). During program checkout, this feature peraits uss of special

software to aid debugsing.

An instructicy Monitor differsnce is the state the effective address is left in
following tha {interrust handling. In tha AP=101B, the Instruction Countar is
incremented to point to the next instruction to be executed. The AkP=101% Instruction
Countar is n3t incremented and i3 latt pointing to tha effending instruction.

2.5 MACHINE STATUS

_+stem status can be altered by the occurrthc. of interrupts Qnd by the program. A
VJblouord rugister within the CPU contains a progras status word (PSW) and is the
tocal point for CPU and systex status econditions.

2.5.1 Program Statys Hord

The program status word (PSW), contains the basic informatjon required for proper
program exacution. The 6&4=-bit FSW includes the next instruction address, the
current conditien code, the carry and overflow indicators, the system mask for
interrupts, and other fialds significant to CPU operations. In genaral, the PSW is
usaed to control instruction sequencing end to hold and indicate the status of tha
systam in relation to the progras currently baing exscuted. Tha active or
controlling PSW is called the “current PSW®. By storing tha current PSW during an
interruption, the status of tha CPU can ba presarved for subsscuent use. By loading
a new PSW or part of & PSW, the state of the CPU can be initialized or changad.
Figure 2-19 shows tha PSW format.

2-18

908735 Okl

. clofr \\ E :
Instruction Address c ClRr|V]o \ uls BSR DOSR
(N T TN NN NN O O T N 1 MioyMIM] ¢ 1 | 11
0) 15 16 17 1819 20.21 22 23 24 27 28 31.
— " I .
System Mask S EA = HighJ S [M{w]/ Interrupt Code
1o BN 3 I TN W O T O T T O T I
32 39 40 43 44 45 46 47 48 63
N -
0-15 Next Instruction Address 38 External Interrupt 1 Mask
16-17 Condition Code 37 External Interrupt 2 Mask System*®
18 Carry Indicator 38 External interrupt 3 Mask Mask
19 Overfiow Indicstor 39 External Interrupt 4 Mask
20 Fixed-Point Arithmatic Overflow Mask® 4043 Reserved for SVC High Order EA Bits
21 Reserved 44 Register Set (GRset Oor 1)
2 Floating Point Exponent Underflow Mask* 45 Machine Check Mask®
23 Significance Mask ® 45 Wait State Bit (Wait/Process)***®
24-27 Branch Sector Register 47 Problem/Supervisor State Controi Bit®*®
281 Data Sector Register 4883 Interrupt Code for Program Check, Machine
32 Counter 1 Mask Check, and Special External Interrups,.or
a3 Counter 2 Mask System*® ‘ 16 Bit Operand PEA for SVC Instruction
34 Instruction Monitor Mask Mask
35 Externel Interrupt 0 Mask
*Mask bit = 0, interrupt inhibited
= 1, interrupt sliowed
®*0 = supervisor state . .

1 e problemn sate _
®®°Q = process state .

1 ® wait suste

Figurae 2-19. PSUW Fields

The overall status of the CPU is preserved in tha current PSW and the contents of
the general registers. The PSW is automatically retained upon taking an interrupt.
1t is thae progrommaer's raesponsibility to preserve the contents of the ganeral
registers when necassary. .

status situation are
conditions involvea
the state of

Certain other conditions that contributae to an overall systam
not automatically preserved when a CPU is interrupted. There
additional units and include the dynamic stata of all other interrupts,
real time counters, and 1/0 systam status.

.Masking is accomplished by setting the appropfiate PSW bit to zero.

2.5.1.1 PSW Fields

The PSW fields (Figure 2-19)'arn defined as follows:

2-19

i

i Addrgsg = Bits 0 through 15 and 2& through 27 of tha PSW
contain the information to determine the address of the next fnstruction
to ba executad. The wschine &rchitecture wmakes provision to addrass
262,164 fullwords, snd the AP=1013 space shuttle harduare {mplementation
providas full sddressing cﬂnapilitv.

cry Stutua

pit lus

16, 17 Candition code for cartain arithmatic, logicsl
 and 170 instructions

18 Carry status bit {ndicator

19 Overflow status Lit indicstor Coverflow can
ba reuset by testing or by loading thae PSW)

20 Fixed Polnt‘Ar{thuutic Ovearflow Mask .
21 Reserved

22 . Flosting Point Exponent Undarflow Mask

23 Significance Mask

Branch Ssctor Registgr < Bits 26 through 27 replace the high-ordar bit of
a branch sddress whan that bit 1s & 1. Otherwisa, «n faplied sactor
reagister of 0000 replaces the high-order bit.

“

Dats Ssctor Rggister <« bits 28 through 31 replace tha high-order bit of a
data addrass whan that bit is & 1. Sea “Expanded Addressing” for datails
whan bit 0 is a zero.

System Mask = Bits 32 through 39 are mask bits. The first two bits of the
System Mask are norsally sssigned to the tuo countars &nd the third to tha
{nstruction HMonitor Fuesture. fTha remaining five masks fneclude 170 end
conditions, other spplication depandent itsms such as & manual interrupt
kay, and timer overtlow conditicns. Tha instruction SET SYSTEM MASK is
provided for wodifying this fiald.

EA-High = For an SVC instruction, the 4-bit extension to wmaka the 19-bit
effective addreuss is saved in the old PSW bits 40-43.

Ruysister Sslect Field ~ The register salsct field, bit 44, controls either
of tuo sets of genersl repisters in current use. When this bit is & zero,
then ragister set 0 s usad; when this bit is ona, then register saet lis
used. Tha sat of general rugistars in current usa can be selicted when a
ness PSW {3 loaded. This can result from the exacution of the PSW load
{nstruction or from sn interrupt.

Maching Chgck ﬂg;g - it ¢%5 is the mask bit which {s usaed to inhibit
machine chack interrupts (see Figure 2-20). When this bit is a zero, then
machine chack interrupts detscted by the CPU are inhibited.

————

2-20

ral

CLS

- pS™
atersust old bl Net Nasa sat. saterrupt CPU/I0P/ACT
peioraty | Class | 25¥ ts L) nasxsslel it | Pensing| Coaue Agcent Time Ceneratea | lacerTust
co powER | 3010 - 2 - | - /A oipor c20 2ower OLL°°°"*° (Mic33c0qe
. Put Awev)
(1} POMER | o= Jooe 34 Lad - ‘N/A NS c2u Fower UR
2 POWER | == 014 | X** - L ./A acycLr <20 Systas Asset
03 POMER | == - .- - - A L - %/A te Shuctle I3A
co nc goeu**®| 0044 | == a3 %o soce Ty (24 TA Pauit
0 [3 040°°?| Q044 | == 43 Yo 0003 NGYCLI cav CPU Micrestese larity
(1] e 0040 3044 - 445 Yo 0006 Npor (4] Zacerrupt Page fault .
3s nc 0040 Coes .- 43 Jo 0002 rorced LNDOP | 102 OMA Memory Multi-bit I37OC
oé = 0040 1’ 2044 - 43 Yo coel Forced LMDOP | CPU €0 Kemory Multiesit 23308
10 e .o ow oo - - .- .- e Spaze ‘
> NC - - - -— - - - - Spaze -
12 nC 0040°°®) 044 | X - - 0007 oYz crv DNDOP Timeout
- nC -— - - - - - - - Sp.”
16 e 9040°°*| J04e | 2 - %o 0009 Pos (=1 cru CYU Caaset Contiaue
. - - - - - - o= - - Reserved
16 nc - L X - L - Ipor P 4 AGZ Breaxpeint (Tester Servics!
30 P - - - - - - - — M/A to Shuttle ISA
3¢ -C - - - - - - - L U Memory Lrrog®*°°*®
37 e - L - - - -— - Lo LU nemory Lrror®*®°®
7 L 070 074 | == 3 Yo WA NoOoP cw €U sreakpoint (lascrsction
nonitor!
N ”t [L2]) <04C | == 20 soces 1 | 0004 oor cr Fines Point Overilow
M g (111} 04C | X - o 0008 forcwd ENDOPF | CPU Plostine Peint Oversiow
{Zxponest)
2 re 0048 304C | == 2 o [[11] rorced DNDOP | C2U Ploacing Point Usderllow
b3] re - -- -— e - - - - s”r.
cl. 3¢ re 0043 S04C | X L %o o600 wcYCL cr Illewal Inst, or I/0 Sosmand
[re 0048 s04C xeoee - No 000s [~ -14 cav Privileqed IASCLIuction .
' Ueskab-d SRy > . . -
€3 re 5048 04C | X Lod No J0¢C Torcee INDOP | CPU Divided by Sero (Flt. 2t.)
- re 0048 304C - 3 No 90cs rorceas LNDOP | C2U sigqnificancs
< 143 00ed s04C X Lo de “00A ooor cru Canvert Overizlow
31 e 00408 c04C x Lad so 9002 rorced INDOP | CPU CPU Addr Seewc 128K. &3 Only -
”- 4C 0oss <85C X Lad No (Iast) | EMDOP cru Suparvisor Call
3 re - - - - e - - - Spars <
12 re - Lt - ;/ - -— - - N/A to Shuttle ISA
3 re 0040 S04C | = | o= 0007 rorsed LNDOP | CPU Store Protect Violatian
o7 1 4 - L Lad Lad - - - Lad N/h %0 Shuttle ZSA
40=43 £2¢] - Lo -— Lad - - - - N/A to Shuctle lSA
44 3YS - - - - -— - - - spare
(1] 3YS 0060 3064 - 32 Yas - |2 114 cru Iaterval Timer We. o
LY 5YS 0068 06C | == 33 Yeas - NDOP crv Incesrval Tiser Wo. 3
47 YS - - - - - - - - ¥/A to Shuttie ISA
30 £341 0078 307C | - b1} Yas 0000 ooor tor Lxternal 0 (10P Voter, ZOP
Reg. Al
50 £ Y] 0078 s07C - 3% Yeas 0000 ZHoOoP Ior txtsrnal 0 (C/W ldle. 202
Rew. A)
s 3Y3 0078 07C -’ 13 Yes 0000 f o l-14 o0 Lxcernal O [(IOP ROS 2aritYy,
- I0P Reg. A)
50 sYS 0078 30IC | == b} Yes 0000 Noor or Exvernal 0 (I0P Faulc, IOF
Req. A}
50 sYS 0078 307C | == 33 Yes 0000 mMoor 1or Lxternal 0 (Wactchdog Timer. -
IOP Rey. A}
31 £3¢] ooso J084 - 36 Yeos 0000 ZNDOP tor £XT 1 1OP Data Flow Lrror :
Cnceode (see Read [nterrupt
key 8 in Section 1) -
3& £ 241 0080 cose - 36 Yes 0000 oooP -1 4 xt 1 O Overflow (IOP Req. B)
&2 TS 0080 0084 | == 36 Yes 0000 £NDOP 10P £xt 1 DMA Timwout (IOP Reg. ¥
I 3YS 0080 0084 | == 36 Yeas 0004 mpor v Bt 1 DA Store Prutect Violation
53 sYs | ooss soac | - 37 | Yes - xoor 100 Ext 2 10P Proyrammsd ntertupcs
- (112} 3
FEX 4 4 sYS 0090 0094 - p1] Yes L oor 109 Spare Lxternal J *
ff (41 5’!5 9_2’2 22!9 - 3 Yesu - ipor p{-2 4 Spare &l‘ttml L)
3¢ SYS | cOAs OCAC | == — | - - . A Spare
4+ ST Y8 0080 5084 | =~ 36 Yas 000¢ NpoPr AGL shuttle AGT InterTupt

® CPU must mec be in the
halt sode
®e CPU must be in halt mode
eee psW can vary. Bavoe cpdated
PC or unupdated PC
seee Only occurs wneh iR
probles scate
evewes yulid only durine ezecuion
18 Diawncse lastruction
veveve ¢ pover #2f durine lone
‘ iascruction, iC may be
Becaed up
(IMST) 14 Bit Operama PTA
of FVC imetrustion
Bugs | Sctarwe held sstive
a MV Y

Figure 2-20.

Interrupt Structure and Priority

2=21

T see wite in paragraph

1..2.

A

o

9.

10.

11.

90038 CLT

Hzit 531;1.- Bit &¢ datsrmines the wait or processing (run) states. Whan
this bit i3 a zers, the CPU i3 in tha processing gtate. When this bit is
& ones tha CPU is in the Wait State.

L] . .
E;gglggﬁingsleggg « Bit 47 datarminas the problem or supurvisor statas.
When this bit is & zaro, the CPU is in the supervisor state and privileged
instructions can ba executed. When this bit is & ona, the CPU is in the
problem state and &ttumpts to axscute privileged fnatructions arae
inhibited resulting in an intsrrupt. .

Bits &8 through 3 are reserved for the intarrupt coda. Program and
wachina check Interrupt cenditions and associsted intarrupt codes are

given in Figure 2-20. . .

2-5'.2 Interrupta ..

1.

3.

Pguyar = This interrupt occurs when primary powur is removed from the
system for any resson. The current PSW, the genaral register set 1 and 2,
the floating point registers, countars 1 and 2, snd tha current DSEs are
put away (stored) in msin storage for future réfarunce. Figure 2-21 showus
the PSA sssignments including putaway. When primary power is restorad,
operation is initiated Wwith the "power on PSW"™ (if the power-up mode is
dafined as Run). This powar<up condition i3 explained in Ganaral Systum

Operation..

Maching Check = Whean not maskad, this interrupt class occurs following the
detecticn ¢f a malfunction. The current instruction is then terminated
and the intarrupt taken. A disgnoatic procadure may than be initiatad.
When masked the interrupt doss not ramain panding.)
Program = This class of intarrupt urises from improper gspacification or
use of instructions or data. Bits 20, 22, and 23 (1zinterrupt enabled,
0=interrupt disabled) in the PSW sre provided to permit masking program
interrupts due to arithmatic exceptions such as fixed point overflow. Bit
34 in the PSW iz provided to paermit masking the fnstructicn monitor
iﬂtcrrupt. $ i v

‘ When wmasked, program interrupts do not remain
panding. When invalid instruction or address datsction is providaed, tha
resulting program intarrupts cannot be maskad.

sypervisor Call {5ve) -~ This interrupt results from tha exscution of tha
$VC instruction. The four MS8s of the 19-bit «xtended EA are placed into
the EA-high field (bits 40-43) of the old PSW, and tha nonextended 16-bit
EA tas placed into the interrupt coda (bits «3-63) of tha old PSW. This
instruction can be used to switch from the probles to tha superviser
state.

2-22

Tul

ral

010

211

012

013

907o35 CLB

July 16, 1987

~Update
(] 1 2 3 4] [} 7] |] A [] [-] € F o
Lgeee Rees. 100 Seif Tests cmmemgptattmemnnemeee Power On Reserved R 9107 v U e
Power OH - Svstem Resorves
Interrupt PSW Reset PSW
Reserved
Resorwed -
Maching Checks Program Chechs
‘..__———Old PSW i New PSW Old PSW Li New PSW emwecmiiny
o Sv sor Cait ISVC)
" | e eem— Otd PSW il mi New PSW cocmmntind -
Program Counter { Program Counter 2
Qta PSW l[New PSW Otg PSW ; Now PSW commcmmgnd
Instruction Monitor Externai Interrupt 0
| s Q0 PSW i New PSW Qe PSW -t - New PSW cmiied
External Interrupt 1 . Entornal Interrupt 2
Od PSW -’ New PSW - Oid PSW ! New PSW e |
Externsl Interruot 3 External Interrupt &
ttmm—— Ola PSW New PSW Oid PSW 7; New PSW e .
Reserved ! l
] BCE 25 IPage 1117 Reverved
f:','.A 1 ::' 2 Reverved T
Put Awav Loc tor G | Reg Set 0
Put Awav L far General Regrster Set 1 - J
Put-Awav Locsuons for the Fi g Point Reg Set
M‘ucm Working Regrsters OSEs .
Put Awsv .—-—-—-.-
Pevereea]cie 1] cv 2 T Reverves Reserved for Fault Detecion
Reserved for Fault O
Reverved for Fault D
- Reverved tor Fault Detecuon
- DSE PUTAWAY FORMAT 3
ADDR REGISTER SET O REGISTER SET 1
OOF8 RESV DSEO RESV DSE1l RESV DSEO RESV DSE1l
OOFA RESV DSE2 RESV DSE3 RESV DSE2 RESV DSE3
QO0FC RESV DSE4 RESV DSES RESV DSE4 RESV DSES
OOFE RESV DSE6 RESV DSE? RESV DSE6 » RSEV DSE7
BITS | O 3| 4 718 11|12 15|16 19 20 23| 24 27 28 _31

Figure 2-21.

Praeferred Storage Araea Assignmaﬁts

2-23

gc03g Ch3.

S. Syatgm = This class ¢f interrupt results fros progras counter timsouts and
conditions cutside the CPU. Provision is made for ssven interrust levils
within this class, &nd ssch is providad with a unigque set of PSKs and &
wask bit. Two are program counters and five are external inteurrupts.

Any nusbar of the fiva sxternal interrupt conditions may be groupad into @
single lavel by the axtarnal squipmant. In the avent of simultaneous
external Interrupt conditions, the lowast numbered (bit Within the systum
wask fiald in the PSW) {nterrupt i3 takan first. Thase intarrupts remain
panding when wasked. :

The two program intervsl timers sre each 32 bits wide and decrement. The lower 16
bits C(least significant halfusrd) of each counter resides in lé-bit binary harduara
counters that count down by oune evary microsacond. The high 16 bits (wost
significant halfword) of esch counter resides in main store. ‘The high haltfword lies
in main store location 0080 for counter | and wain store location 80B1 for countar
2. When the low halfword (in the hardusre counter) passes from 0000 (hex) to FFFF
(hex) an interrupt cccurs which can csuse the high halfword in main store (via
microcoda) to be decremented by ene. This f{ntarrupt i3 transparunt to tha
programmaer until the high halfucrd in main store equals 0000 Chex). When such an
interrupt eoccurs, the high hsltword i3 decrsmentad to FFFF (hax) and a PSW swap
occurs, telling the programmes that thae countsr has timed out. Hote that if the
interrupt is masked tha high haltword will not be decremented by the microcode. The
low halfword continues to count down. Tha intarrupt slthough, remains punding and
if unmasked within 65 ms, tha upper halfword will be decrementad without & loss of &

count. : :

. The counters can be loaﬂnd.and raéd'bv.tha Internal Control instruction, describad
| 1 Saection 10. ' - '

2.522.1 Int-rruaﬁ Handling

The wmachine check, program, &VC, and each asyitem interrupt have two. related PSWs
callad "old"” and "new™ in unigue wain store locations. This Zone of main store is
reafarred to &3 & preferred storége ares (PSA), which is fllustrated in Figure 2-21.

In all cases, an interruption involves meruly storing the currant PSW in its old
position and making the PSW at the new position the currant PSW. The old PSW holds
all the necassary status information in the systems existing at timae of interruption.
If, at the conclusion of the fnterruption routine, thare is an instruction to makse
the old PSW the currant PSW, the systaa is restored to tha state prior to the
interruption, and the interrupted routine continues. This wmeans tha programmar must
clear the fixed point overflow indicstor batore being reuloaded. MNote that it s
possible to switch to the alternata set of gensral registers when the PSH swap takaes
place. This sat of registers is defined by bit 44 in the new PSW.

Interrupticns can &nly ba taken whan the CPU is interruptible for a given sourcs.
The system mask, machine check wask Bit, floating point exponent undarflow mask, thae
significance wask, and the fixed point ovarflow mask bits in the PSW dafina the
interruptible state of the CPU with respact to those sources. Khen maskad, systes
. interrupts remain pending whila machina chack and program interrupts are ignored.

¢ 2-2¢

b

Tus

.

vol

|

4

80”35 CSO July 16, 1987

~ : Update

el B BT
The power transient, certain program interrupts, and the SVC interrupt cannot be
maskad. :

el mudibl ecror PIW ade @ .

2.5.2.2 Interrupt Priority -

Figure 2-20 presants the repartoire of interrupts with approximate priority levels.
Individual interrupts are listad in ordec. by clasasification, rather than by
priority. The priority of each interrupt is representad by a two-digit codae, which
is interpreted as follows:

Eirst Digit - represents the capture latch numbnf' (lower-numbered capture
latchas are examined first) or, if alphabetic, the fact that the interrupt is
genarated by the CPU - sither a Command Interrupt (C), or a Supaervisor Call PSW
swap (P). ‘

Second Digit - represents the priority of the intaerrupt within a grodn}ng
(harcuare or “other").

Conceptually, the order of processing (in the case of intarrupts rucaipad
simultanaously) is as follows:

1. Group 8§ Interrupts '-44—0nvh04-*hc—+n#enﬂua#o—+a—thLs—oanua-ana_:a;a;und_.*
4rterruptaesre—iost?

2. Command Interrypts - Thase are usually interrupts which demand direct
communication from thae CPU to the Interrupt Page Processor. Often, they
are included within a CPU microcodae procadure. Action taken by the CPU is
usually to request the interrupt and than loop at onae microword, waiting
for the Interrupt Page to reset the Control Store Data Register, thereby
forcing a branch to zero.)

3. _Group 1. 2, 90 3 Interrypts = These interrupts differ from the folloqgng
two groups -in that the harduware freezes the CPU microcode at the next
ENDOP whan ona of them is datectad. ’

4. Group & or 3 Interruypts = These intarrupts arae the only types that are
held pending until thaey are unmasked with no additional higher-priority
interrupts present. Thay ars only accepted at ENDOP timae and generally
cause only slight CPU procassing delays if they are masked OFF.

When wmore than one unmasked interrupt requasts saervica, the currant (old) PSW is
stored into and the new PSWU is fetched from two PSA locations assignad to the first
intarrupt to be processad. Then, thae sama procedure is followad using the PSA
locations of the second interrupt, with the exception that the wo1d™ PSW is the
former new PSW as fatched for the first intarrupt. This procadurae of "passing™" the
PSW is continued until tha last interrupt request is acknowledged. Then,
instruction execution is commenced using the PSW last <fetchad. The order of
exacution - of tha interrupt service routines is, consequantly, the reverse of the
order in which the string of "new”™ PSWs were fatched. Machine Check and Power
Transient interruptions supersede all othar intarrupts when they are encountared.

2-25

s

g003s 51

NOTE:

NOTE ON CPU MULTI BIT ERROR OLD PSW

THE PIPELINE IS THE DRIVER FOR CPU MULTI BIT
ERRORS (IU & EA) THEREFORE, THE MACHINE CHECK OLD
PSW FOR CPU MULTI BIT ERROR WILL REFLECT THE
UPDATED PC - NOT THE ADDRESS OF THE MULTI BIT
ERROR. THE FOLLOWING ARE THE WAYS IN WHICH A CPU
MULT! BIT ERROR MAY BE ENCOUNTERED:

1) THE INSTRUCTION UNIT (IU) PREFETCHING
INSTRUCTIONS (UP TO 23 HALFWORDS AHEAD OF THE PC)

2) THE EFFECTIVE ADDRESS UNIT (EA) PREFETCHING
DATA (ANYWHERE IN MEMORY)

S)VTHE EA PREFETCHING A BRANCH TARGET ADDRESS
(ANYWHERE IN MEMORY) ’

IN THE EVENT OF THIS TYPE ERROR, THE ERROR
DETECTION AND CORRECTION (EDAC) REGISTER MAY EE
READ FOR DETERMINATION OF THE ACTUAL MULTI 317V
ERROR ADDRESS.

REWRITE GROUP G INTERRUPTS SECTION AS FOLLOWS:
"GROUP O INTERRUPTS - THESE ARE THE HIGHEST
PRIORITY - THE POWER/MACHINE CHECK TYPE INTER-
RUPTS. THE POWER, SYSTEM RESET, AND IPL INTER-
RUPTS CLEAR ALL PENDING INTERRUPTS = THE REMAIN-
ING GROUP O INTERRUPTS DO NOT. SEE PAGE 2-21
FOR INTERRUPT STRUCTURE AND PRIORITY.

July 16, 1987
Update aQn3g 52

The priority scheme 83 outlined abova is used to resclve race conditions due to
[ultiple interrust conditions. However, since in the case of most normal interrupts
“(those expucted to bLe ancounterad during the axecution of typical spplication
softuware) sepsrata wmask bits snd PSKH locations are provided for esch external
source, the priority of hsndling thasa interrupts is furthar affectud by the
contents of the PSls sctually fetched during the interrust servics ovarhaad. That
i3, as wach PFSW susp occurs, further action with regard to System (and Machine

Check) Interrupts i3 detersined by the mask fields ancountared within ths new PSW.

Two major exceptions to the above process invelve the Instruction Monitor Interrupt
and Supervisor Call. Instruction Monitor conditions are monitored by hardware and
cause no procsssing delays i+ masked GFF, sinca the Interrupt Page will not even be
notifiad of tha condition in thet event. It could bae srgued that Suparvisor Call
might not be considured an interrupt at all, since it is not &n unaxpucted condition
and is appropriately handled by the CPU microcode, but it is included in the list
becausa its exscution necessitatus a PSH SWAP and, tharufore, cooperation by the
Interrupt Page processor in that portion of the instruction juplementatisn.

2.5.2.3 Interrupt Masking

Individusl masking of several of the intarrupt types is possible. When masked off,
the interruption is wither {gnsred or remains panding for later exscution. Tha
masking capability for sach ot the interrupt types is as follows:

1. Pousr Jrungient - Cunnot be masked off.

2. Haching Check = Can be maskad off by setting tha machine chack mask bit 45
- in the PSW equal tuo zuro. When masked off, normal instruction sequancing
occurs, and the inturrupts do not remain panding.

3. Pragram = Threa of tha 11 program interrupts ara capable of being masked
off; fixed point arithmetic overflow, axponent underflow, and
significance, by setting the appropriate mask bits in the PSW aequal to
zero. When maskaed off, these interruptions do not remain pending. -Al&a—t—

PS5 Note that if & PSUW with both Fixad Point Overflow Indicator
and mask (bits 19 and 20) sst {s used, tha interrupt will occur.

6. Sypervisor Call = Csnnot be masked off.

2-2¢6

Tetd

H]
-
.f(
b

N

84036 C53

Eeliahcan ey

5. System =~ Each level of external interrupts can individually be masked off
by setting the corresponding system mask bit in the PSW- aqual to zero.
Interrupts that ars masked ramain pending.

2.5.2.4 Preferred Storage Arsa (PSA) Assignments

The contents of the PSA are shoun in Figure 2-21 with the main store addraess
expressed in hexadecimal notation. Tha following PSA locations must not ba store

protected:

1. Powar off interrupt PSW

2. All old PSW locations - -
3. BCE 242 ?Prouaser STWrajt ((0oA¥ °°A’)

4§32 Counter 1 and 2, high halfword locations 0080 and 00B1
§:ﬁf' Putaway locations (00C0 through 0102)

6,5. Diagnostics (104-13F).

2.5.3 Ggngral Svatem Operation

The various states entered by the computer and their relationship to the basic
operator controls are shown in Figure 2-22. The basic controls provided for the
operator ars power-on, initial program load (IPL) and the system resat key. Among
the many controls available, these functions have special significance because of
their relationship to an unconditional system resat sequencs. These functions each
produce a systam resat sequence which applies to the computar, . I/0 channels, and
peripharals. Further operation within the system differs, howeaver, as explained in
the following sections. o

2-27

o
()
(]
(&3]
(6p]
o
o
S aug

ur.u / T \ .(M-Oa Run Moce)

{1
G

limorrust)

s ~ | twen
-~ ~] Swe PSWI

L----—-«.J s e e ase e

I 1.
| i

P

i

3

§

Figure 2-22. CPU Mode Switching

2.5.3.1 Powar-in

One of two modus of opuration must be specified for the system at power-on. The
first results in a system resst fullowed by the computar entsring tha stop stata.
In this state, instructions are nut processed, fnterrupts wre not accepted, and
systoem timers sre not updated. This system {3 termud "menual®™ because further
operation must be deteruined by ths operatsr.

The second mode at pouwar-on entars the run state after the systenm reset is complete.
Tha instruction stresm is initisted end interrupts are processed. Tha computer can
be removed frow the run state by certain instructiuns, interruptions, snd by sanual
intervention.

2.9.3.2 Systus Rasat

The system rasut function resets the computer system to a known state such that
processing can be initisted without the presence of machine checks, excapt for those
used by subsequent wmachine salfunctions. The system resat function causas the
«9llouing:
3

val

'y

90236 €55

et amk A ks Y

e« cPU pcndipg intarrupts are ros.¥

e Intarnal timers ars resat to all onas (1's))
. Status rigistors are reset

. DSE registars are set to zero. f“

2.5.3.3 1PL

The use of the IPL function is independant of the prior state of the system. 1IPL
first causes a systam resaet function and tha writing of C6C6 (hex) by tha CPU to all
mamory locations above and including address 20000 Hex with mamory store protected.
I0P microcode at IPL writes C9FB (hex) to all locations from 0 tc 1FFFF Hex, with
mamory stora protactad. ,

2.5.4 Qpgrating State

a4

.« -
-

The run state and wait state shown in Figure 2-22 are collaectively taermed the

oparating stata for tha system. MWhaen the computer is in the run state, instructions

are exacuted in thae normal mannar. An instruction may ba encountered or an
intarrupt processad that forces the computar into tha wait state. Thae computer does
not executa instructions in the wait state, but it is interruptibla when not masked.
System timers are updated and input/output operations continua in tha wait stata.

The wait stata may also be enteared aftar completing IPL or by spaecial operating
intervention via the stop stata (dotted linas on Figura 2-22). This action is the

.rasult of the wait bit being sat in thae controlling PSW. .

2.5.4.1 Program gtift Alternatives

.
oy
htd

-

Cartain other states exist within thae CPU that contribute to its overall status.
These states are directly relatad to program opaeration and ara:

1. Maskad or Interryptible State = The computer may be masked for certain

intarrupt conditions at any givan tima. Thesa conditions genarally remain
peiding within tha systam until the maskad condition is changed by the
pragram. Cartain errcr conditions cannot be masked off, while other arror
ecoaditions, such as program chacks., ara ignored whan spaecifically masked.

2. Syservisor or Problem State = In the supervisor state, all instructions
are valid. In the problem state, I/0 and cartain other instructions ara

invalid, and their use produces an error intarrupt. This stata is
coatrolled by bit 47 in the PSW. The SVC instruction is provided to
switch from problem to suparvisor stata. Tha LOAD PSW instruction is usad

2-29

238 C5S

-

July 16, 1987 Q
Update : ~

S

td auitch from superviscr to problem state.

3. Geraral Ragister S«lectian - Bit 44 is the currant PSW and selaects the sat

of genersl registers in current use.

2.5.5 Architgctursl Growth

Throughout this Principles of Operation manual, architecture convantions are defined
or facilities sre marked "reuserved” to retain flexibility for future implumentations
end. extensicns. The computer operates in conformance to this munual: when
architacture definitions are followed consistantly. Hardware opsration, whaen these
rules are viclated, is not dafined and is properly outside the scope of this manual
to retain flaxibility of implemantation. "Programmar dJdiscovered™ operstions that
violate or go beyond tha dafinitions dascribed hersin, but produce "useful™
functions, should not be usad and should ba considersd "reserved”, bacause tha
results obtsined may vary from computer to computer, or «ven relaase lavels for one
computer, depunding upon options saeleucted or the design realease level to which tha
hardware is manufactured.

2-30

S

¥k

i

yrcn35 203

11.0 AP-101S SHUTTLE INSTRUCTION SET

11.1 EFFECTIVE ADDRESS GENERATION SUMMARY CHA.R"-I'

== RS Format
SRS, & Extended Indaxed Addressing (AM=1)
Formats Addressing
(AM=0) AL X=000 X=000
B ‘ PEA=(B)+DISP
112¥11 | EA=(B)+DISP | EA=(B)+DISP 00 EA=IC+PEA EA=(X)q.15*PEA
01 EA=IC-PEA EA-(x)' *PEA
10 EA=sMS(PEA) }:A-MS(PLA)*(X)O.J_;,
1 EA=MS(PEA)®** EA=MS(PEA)***+X)0.15
PEA=DISP
B2=11 | EA=(B)*DISP | EA=DISP 00 EA=IC+PEA EA=(X)g.15*PEA
: 01 EA=IC-PEA . EA=X)s_,s*PEA °
10 EA=MS(PEA) EA'MS(PEA)“‘(X)o_Is
11 EA=MS(PEA)** EA-MS(PEA)"'*O{)O_IS
Definitions
"EA Effective address, main storage address of second operand
PEA Preliminary effective sddress
(RN) Contents of bits 0-15 of general register N specified by B2 or X
RN General register "N", where N= 0 to 7
®) Contents of bits 0-15 of general register specified by the B2 field
B2 B field of SRS, SI, or RS format instruction
MS() Contents of the main storage location tpecined by the contents of the pu-anthuu
DISp Displacement field of instruction
X X field of RS format instruction with indexed mode of addressing
X)g.y5 Most significant halfword (bits 0-15) of the content of index register X sutomatic-
ally aligned. . .
AM AM (addressing mode) field of RS fotnnt instruction
1A IA (indirect address) field of RS format instruction with the indexed mode of
addressing
1 Iﬂdddkstmhmcdmﬁﬁmdmdmod.dmm
IC Updated Instruction Counter
. Automatic Index Modification
hed Automatic Storage Modification ’
ses Direct Storage Addressing with/without Post Indexing
X INDEX VALUE X INDEX VALUE
000 Zero 100 ®R4)
001 ®1) 101 ®RS)
010 R2) - 110 R6)
011 ®R3) 111 [: 3]

11-1

‘e
Jh P

L g S

. ~

: qp026 209

12.0 AP-101S INSTRUCTION REPERTOIRE

12.1 SHUTTLE INSTRUCTION SET

Name nggmﬁhigg Eormat

Eixed Point QOperations
Add AR, A RR,SRS,RS
Add Halfword AH SRS,RS
Add Halfword Immadiate AHI RI
Add to Storage AST RS
Compare CR,C 2R,SRS,RS
Compare Butwean Limits CBL RR
Compare Halfword CH SRS,RS
Compare Halfword Immediste CHI1 RI
Compare Immadiate with Storuge CIST sI
Divide DR,D RR,SRS,RS

- Exchange Upper and Lowaer Halfwords XUL RR

Insert Address Low IAL SRS,RS
Insert Halfword Low IHL RS
Load LR;L RR.SRS:RS
Load Address) LA SRS,RS
Load Arithmetic Complaement LCR RR
Load Fixed Immaediate LFX1 RR
Load Halfword LH SRS,RS
Load Multiple : LM RS
Modify Storage Halfuword MSTH SI
Multiply . MR.M RR,SRS,RS
Multiply Halfword MH $RS,RS
Multiply Halfword Immadiate MHI RI
Multiply Integer Hslfuword MIH RS
Store ST SRS,RS
Store Halfword STH SRS,RS
Store Multiple . STM RS
Subtract SR, S RR,SRS,RS
Subtract from Storaga sST RS
Subtract Hal fuword $H S$RS,RS
Tally Down TD SRS,RS

12-1

Eloating Point Operations

Add (Long Oparand)

Add (Short Oparands)
Compare (Short Operand)
Compare (Long Oparand)
Convert to Fixed Point
Convert to Floating Point
Divide (Extended Operand)
Divida (Short Oparsnd)

Load (Long Operand)

Load (Shkort Operand)

Load Complement (Short Opwrand)
Losd Fixed Register

Load Floating Immedista
Load Flosting Register
Midvalue Se«lect (Short Operands)
Multiply (Extended Oparand)
Multiply (Short Operand)
Subtract (Long Operand)
Subtract (Short Operand)
Store (Long Opaerand)

Store (Short Operand)

DiagnosaX

Store Extanded Addrass
Store DSE Multiple
Insert Storage Protact Bitsk
Load Program Statusx
Move Halfword Operands
Sat Program Mask

Lot Systeum MaskX

Stack Call

Stack Return

Load DSE Multiple

Losd Extended Address
Supaervisor Call

Test and St

Test and Set Bits

Internal Control Opgrations

Intarnal Control¥

170 QOperstions

Program Controllad Input/Outputx

#Privilegaed Instruction

AEDR, AED
AER, AE
CER,CE
CEDR, CED
CVFX
CVFL
DEDR, DED
DER, DE
LED
LER,LE
LECR
LFXR
LFLI
LFLR

MVS
MEDR,MED
MER,ME
SEDR, SED
SER, SE
STED

STE

STXA
STDM
1SPB
LPS
MVH
SPM
S$SM
SCAL
SRET
LDM
LXA
SVC
15
TSB

ICR

PC

12-3

RR,RS
RR,SRS,RS
RR,RS
RR,RS

RR

RR

RR,RS
RR,SRS,RS
RS
RR,SRS,RS

RR,RS
RR,SRS,RS
RR,RS
RR,»SRS,RS
RS

SRS,RS

RS
RR,RS
RS
RS
RS
RR
RR
RS
RS
RR
RS
RR,RS
RS
RS
SI

RR

RR

Branch and Link

Branch and Index

Branch on Conditien

Branch on Condition Backuard

Branch on Condition (Extendad)
Branch on Condition Forward

Branch on Count

Branch on Count Backward

Branch on Ovarflow and Carry

Branch on Overflow snd Carry Forward

Shift Operptions

£

Normalize and Count

shift Left Logical

Shift Left Double Logical
Shift Right Arithsetic

shift Right Doublae Arithmetic
Shift Right Logical

$hift Right Double Logical
Shift Right and Rotate

Shift Right Doubla and Rotata

Logical Operations

AND

AND Halfword Immediate

AND Immediate mith Storage

AND to Storage

Exclusive-0R

‘Exclusiva-OR Halfword Immediste
Exclusive-OR lsmedisute with Storsge
Exclusive-0OR to Storage

OR

OR Halfword lmmadiats

OR to Storsge

Search Under Mask

Sat Bits

Set Halfword

Test Bits

Test Registar Bits

Test Halfwuord

Zero Bits

2ero Ragister Bits

2ero Hulfword

Mngmenics

BALR,BAL
BIX
BCR,BC
19 }

BCRE

BCF
BCTR.BCT
BCTB
-BVCR,BVC
BVCF

HCT
SLL
SLDL
SRA
SRDA
SRL
SRDL
SRR
SROR

HR, N
HHI
NIST
NST -
XR,X
XH1
XIST
XsT
OR,0
OHI
osTY
SUM
S8
SHW
T8
TRS
TH
Z8
ZRB
ZH

— 12-2

RR,RS
RS
RR,RS
SRS
RR
SRS
RR,RS
SRS
RR,RS
SRS

RR

SRS
SRS
SRS
SRS
SRS
SRS
SRS
SRS

RR,SKS,RS
RI

SI

RS
RR,SRS,RS
RI

$I

RS
RR,SRS,RS
Rl

RS

RR

SI

SRS,RS

SI

R1

SRS,RS

$1

RI

SRS,RS

pron—

improvament ovar nonpipalinad sequentisl machines. The pipeline which is invelved
Is based on prafatching both instructions and cpaerands from memory. Instructions
and operands arw prafetchad 4ssuming sequantial instruction exacution. This means
that as long as the sequance of instruction uxecution is not altaered, a1l prefatchaed

Some branch instructionsg slter the Sequance of execution, &nd therefors nullify ény
prefetchad information. Tha time required to restart tha pipeline in this case may
be directly attributed to the branch instruction. Instruction execution timas for
branch instructions include all overhead required to rustart the Pipalina, it thae
order of sxacution is alterad. .

Other factors also exist which have an impact on thae throughput of the pipeling.
These factors may not ba attributaed directly to any ona instruction in Senaeral,
rather they are a function of the order and relationship of instruction exacution.
Three factors may be classified as follows:

Registar conflict Modification of base or fndex register
neéaded to prufatch an cperand

Store conflict Hodificafioh of prufnfchnd operand

I unit hazard Modification eof prafatchad instruction

Ppenalty i{n exaecution time wust be considerad independant of instruction @xacution
time. The total time ragquired to execute & given sequencae of instructions must
includa any applicable pPanalty dua to these factors. ’

It is for this reason that a separate description of conflicts and hazards is
presaentad. Not only will t

Furthermore, numarous conditions, such a3 branching and stora instructions, will ba
discussed with an aemphasia on Pipeline operation. Instructions of this type changeg
the nature of Pipuline pProcessing near that instruction, but sre not o conflict or
hazard, In order to aid undarstanding of the AP-l01s computar and the pipelina,
these instructions have bean includad in this discussion. Any exaecuticn time
impacts due to the pipeling have already bewun included in the stated instruction
exacution timus. .

16.1 INSTRuUCTION EXECUTION - PIPELINE BASICS

| ¢Cn25 248

) -
UVU‘U\J

. ~mputed. HNext, the sacond operand is read from memory using the effective addruss

__A) during the oparand fetch stage. Finally, tha instruction may be aexecuted,
generally resulting in modification of the general purpose ragisters. In the case
of the AP-101S5 computer, two additional stages are raquired in support of the memory
referencas. Since the AP-10185 utilizes expanded addressing, an sdditional stage of
address translastion iIs required for every wmemory operstion. Therafore, &n
instruction address trenslation staga and operand address translation atage sre
reaquired. Figure 16-1 showus the relationship betwaan all six stages of tha AP-101S

computer.

Each stags represents a specific function which is relatively independent of the
other functions, axcept for the given time relationship. It is this independence
and the timing seguence which permits the construction of a six stage pipeline.
Within the pipeline, sach function, or stage, is contained and controlled complataly
by an independent harduware slemant. The timing relationship batween an instruction
and each hsrdware elament s shown in Figure 16-2.

The advantage of using a pipslined organization §s obvious when considearing the
axecution of three simple instructions. Figure 16=3 indicates that a total of 13
machine cycles would be required for a sequential machine to exscute just threas
instructions, assuming that esch stage of the instruction could be completad in a
single machine cycls. Esch hardusire alement {s capeble of independent operstion,
which parmits pipeline operation as shown in the figure. Notice that a total of 8
machine cycles are required to execute thrae instructions. Considering pipaline
operation for & sequence of & single type of instruction yields the wesn time
required to executa that {instruction. The aexample shown is for an RS format
instruction. If tha example wére sxtended indefinitely, the exscution time would

~average to 2 cycles per instruction. Completing & similar pipeline chart for SRS

istructions would indicate 1.5 c¢ycles per instruction, and 1 cycle for RR format
instructions. For the AP-1013 computsr, tha pipeline cycle time is 0.250
microseconds.

16.2 LONG INSTRUCTIOKS = NON-SINGLE-CYCLE EXECUTION

Not all instructions may be executaed by the execution unit within a single pipeline
cycle. Thase instructions, ruferred to as long instructions, force the pipelina to
stop while wexecution proceeds, us indicated in Figure 16-¢. This is actuslly
accomplished by postpening further EA calculations until the last machine cyclae of
the long instruction. Instruction exacution timas as indicated includs any affucts
of long instructions, a&s necessary. HNotice that evun though the pipeline waits for
& number of cycles, there are no unused cycles in the exacution unit.

16.3 BRANCH INSTRUCTIONS = RESTART THE PIPELINE

Branch instructions, as previously discussed, cause any prefetched information to be
discarded and the pipeline must be restsrtad. The bresnch instruction shown in
Figure 16-35 indicates that 3 wmachine cycles within the execution unit are unusad
during the pipeline restart. Also, notice that the target instruction has

16-2

Instruction Execution
b —————

Instruction
Instruction C oy o Owperand Instruction
Feich %""d - Futeh Exscution
Generstion

With Expanded Address Generation (Translstion)

Fstch

Instruction

Execution

. Instruction o
Instruction Instructian D‘i“' Operand Cpwrund
Address Operand ‘w"’f'
Transistion Fetch EA Transstion Fetch
Generstion
Figure 16-1. Dissection of Instruction
o Sequenceof 6 fﬁnctiot_n ~+8 stage pipeling
9o Independent hardware per stage/tunction
instruction Instruction Instruction Operand Operand
Hardware Address Fstch Decode Address
Elemnent Transiate EA Gen Transiate
R ——
IX, .
IF .
EA
ox —
OF
EX

Figure 16-2. Pipauline Hardwuare Elemants

16-3

Instruction

Exscute

(&s)
(on
(]
(&%)
fop]
o
o
O

o Corsider the instruction saguence 123
6 Saguentisl mechine operstion is:

ix Lie Jea lox Jor lex |ix_lie lea] -] - | x
sl fomsloxalen ol alma o] - | = | - Jesalons]orsfex]

& cycles x 3 instructions = 18 cycies to compiets 3 instructions

6 Pideling mechine execution is;

X l'xl"le'x:l
IF l"‘tl"‘z"':l
EA EA_{EA_{EA

' "oleoxalox 8 cycles 10 comoplete 3 instructions
ox [9%419%,19%] e oo
OF lm" lor A Ioral
EX _ ltx‘ l"‘,l"‘;l

Therefore, over 8 period of time, pipelined instructions would sversge:

2 cyclas / RS instruction
15 cycies / SRS instruction
1 cvele / RH imitruction

Figure 16-3. Pipeline Advantage |

© Nots hazard or conflict - ’ o
-] Irstructions which reguire more than 1 pipeling cycle to exscute
o Poviponas EA celculstions until end of instruction :

l_.OC INSTR
L AE :
Le2 = (SHORT FLT PU ADD)
Lot —-—
usgmacsnn W AL T |
I EAL l“uz EALwa | EA .o
L7
l OX, 9% 42 19%Lie 0X\ vs
or |or, OF g '
EX, EX 42 | EXLue l"‘uc l
TR -13‘8 | .

Figure 16~4. Long Instruction

16-4

90036 251

o Not a hazard or conflict
o Harmful to pipeline throughput — 3 cycles to restart

o Example: -
LOC "INSTR
B BC, T
B+2 .
T

|) e
|

OXB
Instr@T

OF
llnnsrﬁTl l OFr I

: 1 1
EX Unused | Unused | Unused | EXg
8 i |

Branch ,

Figure 16-5. Branch Taken

previously been prefetched by the EA unit in ordar to minimize the restart time. If
a conditional branch is not takan, than thae pipeline is not raestartaed. Indicatud
instruction exwcution timus include all effects of restarting the pipaline.

16.4 REGISTER CONFLICT - MODIFY BASE OR INDEX REGISTER

Ragister conflicts can caly eccur for instructions which use either 8 basse or an
index ragistar to compute the effactive addruss of a mamory opersnd. A conflict
arises if a preceding instruction (within three instructions) modifies tha contents
of the registar which is used for the base or index value. In order to wminimize the
panalty involved, registar conflicts are datacted and totally controlled by hardware
resources. EA unit eperation is postponad, as shown in Figure 1l6-6, until the
register involved has bewn lusded with tha correct value. At most, three machina
cyclus will ba unusad by the EA unit while waiting for valid register data. This,
results in thresa unused machine cyclas in the execution unit hardware. This penalty
will decreasa, deapending upon the number of instructions batwaeen the
registar-modifying instruction and tha register-using instruction. Any paenalty
involvad with registaer conflicts has not bean included with thae stated instruction
exucution times, and must be evaluated separately if necessary.

16-5

Foa. ™y
)

o Caused by loading & using a base/indax register within 3 instructions
o Detected snd handled by hardwsre .
o Forces sequential instruction execution within pipeline
© Postpones futch of bass/index register by 1, 2, or 3 cycles
0 Exsmpie:
INSTR
“AHR R3, RS
R+t M R1, ADDR(R3}
H+3 PR,
R] i
<Rrgcted 1 1 1 R3 used
I Unused l I OXR.H cooe
l Unused l . OFR+1 '-—-—

’ ! |
l EXq l Unused : Unused :Unuud l EXp4q I---

R3
Moditied

Figure 16-6. Register Conflict

16.5 STORE INSTRUCTIONS = MULTIFLE MEMORY CYCLES

The pipelina structure has buen implementeud to maximize performance for memory read
oparations. Mamory write operations do not fit into the same pipeline structurse as
read opurstions and, &9 &8 result, the pipeline is disturbad in the area of a store
instruction. Figura 16~7 indicatas that twe additional memory cycles are needad to
perform the actusl memory write operstion. Also notice that tha EA unit perforns a
pre-read of tha wmamory location in order to assist the memory managument unit in
storage protuction error detection. At most, two cycles will be unavsilsble for
instruction axecution due to this pipeline disturbance. The sctual number of cycles
lost i3 dependant upon thae nature of_ the instruction following the store
instruction. Thersfore, the {nstruction execution time preasented for store
instructions is a typicsl value. The corresponding note for applicable store
instructions {indicetes some critaria for determining the exact tima raequired to
execute & specific stora instruction. Only simple store instructions operate in
this fashion. Thase are; ST, $STH, STE and STB.

16.6 STORE COMNFLICT - MODIFY PREFETCHED MEMORY OPERAND

Store conflicts are & result of prefstching oplrands from memory. An operand

16-6

90035 253

L B9 TR g

© Not s hazerd or conflict
o Casuses sdditionsl 2 cycie duisy due to memory = total execution .75 > 25 us

o Exwsmple: l_..._;_.c . . INSTR .
w ST ADDR
w+2 AR R3, A4
w+3 socsn
W .
WS o
EA EA EA EA Wait for EA
w w+2 w3 Wed Memory w+S
x ox ox ox | ox o
° w w2 W+l w Busy™ Wl xwﬁ N
Prevesd Store .
F OF oF OF OF OF OF
° w we2 | wed w w W TWeS l
Preresd Store Store
EX EX - |Extend- | EX EX wx
w W+2 | Do Not W+3 | Unused Wt W+5
. Updare PC

V Vv

Used if EX is Used if EX is
w+2 W+2

- ot least 2 cycies at leist 4 cycles
Figure 16-7. Store Instruction

prafatch for a load instruction Wwill actually occur before the memory writa is done
for a store instruction which precedas the load. If the load and store instructions
involve the same memory sddrass, then tha opurand prafutch for tha load instruction
must ba postponed until the memory write is completed, as shown in Figure 16-8.
(The oparand fatch actually occurs, however, the data is discarded). .In order to
minimize tha penalty involved, store conflicts are detected and totally controllead
by hardware resources. Any penslty involved with store conflicts has not been
included with tha stated instruction times, and must be evaluated separataly if
necessary. Storae conflicts sre applicable for simple store instructions only.

Tha store conflict hardware has baen simplifiaed somewhat by assuming that all memory
opaerations involve two locations, or 32 bits. Thereforae, tha conflicting
instructions only need to deal with memory locations which are within one location
of esach other in order to cause tha detaction of a store conflict. Furthermora,
store conflicts are datactad on tha 16 bit logical address, and not the 19 bit
physical wsddrass. In ordar to guarantee propar operation with expanded mamory
addrassing, store conflicts are datected on thae 15 luast significant bits of the
logical sddruss. Addrassus 7FFF and 0000 sre considered to be contiguous, as are
sddressas FFFF and 8000. At most, two machine cycles will be lost whila the operand
fatch is postponed. This penalty will dacrease to one machine cycle if one other
instruction is aexecutad between tha contflicting instructions. No conflict will
axist if there are two or morw inturvening instructions.

16-7

90035 25k

© Caused by store with suctecsiva 1oad from memory within 2 instructions : -
© Dwtected snd hendied by herdware .
© Exsmple:
Loc INSTR
w ST ADDR
W+ L ADOR
m L
) Store ‘ hhﬁ
EA EA Contlict ¥ for EA
w We2 | Dswcted) - Memory Wied
ox o} 4
lox wez | W2 X w sy | wez Jox
w {wasted) y] Store (soou) | Wed
OF oF oF &
or w2 I ‘A!'I-:’:z w [° w we2 |oF
w (wasted) wested)| StOT® Store {oc00) Wed
EX Normal Normgl |EX EX
T W Unused | 5100 Unuwd | iore W42 Wt

[Unund due to timing

of the store instruction

P e—
O

Figurs 16-8. Store Conflict

" «6.7 SUCCESSIVE STORES - BACK-TO-BACK STORES

The execution unit of the CPU- cuntains a store punding register which holds the
mamory address for simple stors instructions. Since only on« register eaxists, only
one storw Instruction can reside in the pipeline st one time. Figure 16-9 indicates
that processing by the EA unit for the second store instruction is postponed until
the mamory write for tha first store instruction has been initisted. This situaticn
Is not & conflict or hazard, 1t is only a limitation of the hardwsre. The
guidelines associsted with store instruction exacution times includes & case for a
successive store condition. A punalty of 2 machine cycles huas baeen included with
the exscution time of the first store instruction. This panalty will decrease to
one machine cycle {f one other {instruction is executud betweun the store
instructions. No penalty exists if there are two or more intervening instructions.
The penalty tor succassive stores is applicable only for simple stors instructions.

16.3 I UNIT HAZARD - MODIFICATION OF PREFETCHED INSTRUCTION

An T unit Cinstruction fetch unit) hazard is the result of a store instruction which
modifies menmory in the immediste sres of the current instruction. The I unit can be
at wmost 22 wmemory locations shesd of the current {nstruction. It & store

16-8

i

w
(g
<
[P
o
ro
183
o

o Caused by consecutive store instructions within 2 mstructlom
o Detected & handled by hardware
o Due to existence of one sddress register for C_P_U stores

Example: LOC INSTR
W “STADDR X 5
W+2 STADDR Y) (2 cycles lost)
W+4

i S.AW‘*Z

Sm:uqu

» S
IE"w Detectea §

O—— - w: w- -

o Busy |OX
I xw l Df . \ W+2
OF OF :
l OF, Store | Store OFW+2
Normal Normal
EXy , Unused | Siore | Unused | Stare | EXwe2 l

Unused due to timing

Store pending
register active
of the store instruction

Figure 16-9. Succussive Stores

instruction writes to memory in the area from which tha I unit may have already
prafatched instructions, then an I unit hazard axists. The actuasl dataction
circuitry uses the ranga of IC-1 to IC+23 in order to indicate an I unit hazard.
Once & hazard has bean dutscted, the entire pipaline is discarded and restarted from
the location following tha current instruction, as indicated in Figure 156-10.

I unit hazards are detucted on the 16 bit logical address, and not the 19 bit
physical address. In ordaer to guarantaa propar operation with expanded maemory
addressing, I unit hszards are datacted on tha 15 least significant bits of thae
logical address. Addressaes 7FFF and 0000 are considarad to bae contiguous, as are
addresses FFFF and 8000.

The I unit hazard circuitry is provided in order to guard against self-modifying
coda. This circuitry forces a rastart of the pipelina to guarantea that thae proper
instructions., including modified instructions, are executed. Howaver, it is
possible to wmodify & data location &t the end of a program segment and cause an I
unit hazard. Tha 1 unit hazard circuitry cannot distinguish batween memory used for
instructions as opposad to data. Therefore, any stora within the indicated ranga
Will cause &n I unit hazard condition whetheur it is real or not.

16.9 CONFLICT/HAZARD SUMMARY

All effacts of the pipaline on instruction execution times have been includaed with
the indicatad times excapt for registar conflicts, store conflicts, and I unit

16-9

e

«w
(@n
(e
3
™
t9
o
(e

0 Causidd by 8 store into memory within the immedisw sres
of the curremt instruction (=1 w PC w +23)

0 Forces @ rectart of the [-unit snd pipetine.

0 Deteciad by hardwers. Mendlsd by microcooe

£ xamiple: LOg INSTR
W ST ADDR+23
mz osee
ix l
we2
| sl
we2
IEA I €A l
w o - w2
ox ! . ox
W weal
IOF I . OF
w We2
™ I I
WW
Microcodis 2.28 us
I“ ’ " Lost due to restart).l
: ldcycim @250 ns =35 us .

Figore 16=10. I Unit Hazard

hazards. B-iou is & summary of tha penalties fnvolved with wach.

NHusber of Intarvening Instructions

8 inster 1 inste 2 instr
Register Conflict <75 us .50 us .25 us
Store Conflict : 50 us 25 us ————

Independunt of Intervening Instructions

I Unit Hazard 3.55 us

‘ 16-10

(3% I
w2

e

' g e R S T
PRI el 2 e el

P

\ -~ 17.0 AP=101S INSTRUCTION EXECUTION TIMES
{ All floating point exscution times have besen rounded up to the nearest multiple of

250 nanosaconds and are basad on the following assumptions:

. Neither operand is zwro, and for the long (64-bit) instructions naither hi
or low words of an opaerand is zero. ’

. All results will require nornalizntiéb of 8 bits (2 hax digits).

(] All operands are normalized, hence prenormalization of the divisor in tha
divide instructions is unnecessary.

. For instructions reaquiring prealignment (Add, Subtract, Compare) the
. difference in exponants will be 4. :

L Operands will not be tha sama signs (except for tha COMPARE instructions
in which operands will have identical signs).

17-1

90025 258

INSTRUCTION EXECUTION TINME IN US .

i .
e NORMAL . DOUBLE IHOIRECTION AUTO AUTO
IRSTRUCTION - ADORESSING XCx0 | XC30 | xC=l | XCsl STORAGE INDEXTING
ROCES Cso | Cul C a0 | €=l MOOIFICATION :
A RS 258 4.5 4.25 | 4.25 | 4.25 5.5 7.2
A SRS 250 —— — — — Jro— R
AE L} t.50 .75 | .8 6.5 6.5 7.5 y.0
AE SRS £.50 — a—— — — — —
AED RS 6.50 18.% | 10.25] 10.25| 10.25| 11.5 13.29
AH L} 259 4.50 | 0.25 | 4.25 | &.25 5.50 7.0
AST RS . <750 6.0 7.0 5.7% | 7.0 8.25 10.28
BAL RS 3.78% 7.0 16.0 $. 78 [16.0 5.0 y.5
BALR RR BT=3.505 BHTs4.50 — | —] — | —] — —
sc RS BYx1.25)5 BWT®. 259 4.28 | 7.28 | &.0 7.28 5.25% 6.25
BT RS 6Tu}. 783 BNT=,750 «.5 7.8 %.2% | 7.5 5.5 7.0
BLTS RS BT 793 BRNTE,750 camm— — — asnm— w——— em—
3CTR RR BYs1.753 BHT=,75¢ — — — — a— —
BIX RS BT=g.51 BNTxL.5 5.7 | 8.7 5.5 8.7% ¢.735 8.25
17~ RS BTsl.25) BNTs.58 - 4.0 7.0 3.7 | 7.0 5.0 ¢.5
svee SrRS BTR1.253 BHT=.5%¢ wan—— n— — ——— — ———
BYCR RR BT=1.25; BMT=.50 — —— —— — —— ——
c RS .250 4.5 4.28 | 4.25 | 4.25 5.5 7.28
-2 R® AVG. = 5.0 — a—— an—— — coam— at—
{ RS 1.7% 6.0 5.7 | .75 | 5.75 .75 8.5
beo RS 5.75 9.7 | 9.5 | 95 | ss5 | 10.73 12.5
cH RS 250 .50 | 4.28 | 4.285 | 4.25 5.50 7.0
D RS (Rl EVEN) AVG, = 4,928 9.0 | 8.8 8.8 8.8 10.08 11.8
0 RS (R}l COO) AVG, ® 4,673 8.8 7.55 | 7.58 | 7.55 9.8 10.08
o SRS (Rl EVEN) AVG., B 4.925 n—— s — — — —
D SRS (R) D) AVE. ® 4,675 e— — —— — — ———
DE RS 7.50 12 11.5 | 11.% | 11.5 12.75 15.25
OED RS 23.00 LY.78;: 27.75| BT.78) &¢7.7S| 2W8.73 ty.75
OR RR (N1 EVEK) AVG., 8 &.928 — m—— — — e——— —
oR RR (w1l 0UG) AVE. ® 4.67% ——— — ——— — — —
IAL R3 .50 4.0 5.0 3.73 | 5.0 .28 s.9
IHL RS 50 4.78 | 4.50 | 4.50 | &.50 5.73 7.2%
1sP8 RS (R]l = @) $.628 8.0 9.0 7.73 | 9.0 16.25. 12.0
IsP8 RS (w1 = }) 5.625 8.0 9.0 7.7 | 9.0 10.2% 1z2.0
1sPB RS (Rl = 2) 5.628 8.8 9.9 7.7% | 9.0 10.25 12.0
1sP8 RS (R = 3) 5.625 8.0 $.0 7.7 | 9.8 10.25 12.0

17-2

July 1o, 1Yt
~
] ' genas 259 W Update
, TP r-v-x7
- - INSTRUCTION EXECUTION TIME IN US
NS P . NORMAL DOUBLE INOIRECTION AUTO AuTo
INSTRUCTION ADDRESSING xc=0 | xcz0 | XC=1 | XCs3l STORAGE INDEXING
- : MOOES C=0|Cs=1 | C=0 | C =l | MOOIFICATION
15r8 RS (Rl = 6) .125 ' o | —] —] — — —
1sPB RS (Rl = 7) .125 — | — | —] — — _—
L RS ° .350 ‘.s 5.35 4-25 6.25 s's 7.25
L . “s . .zso * m— — — — — co—
LA .. &S .250 4.0 | 5.0 | 3.75 | 5.0 é.25 8.0
LA - SRS : o;gﬂ | m— — ——— en— —— sn—
m RR , -) o Sm— — —— —— — ——
LOM RS - 6.9F 00 Jo0 0 loo fo-25 0.5 |
LE RS . 1.20 5.0 | 4.75 | 4.75 | 4.75 | 5.75 8.5 -
LE . SRS 1.20 ——— —— — —— e —‘..-:-
LECR RR " 1.00 o — | —] —] — _— —_—r
LED RS . 1.50 5.5 | 5.0 | s.0 |Ss.0 6.25 8.75
LER RR 1.00 — — — — — C—
uu an .7s° ————— —— — ——— an— — ; .
uu Rn ..750 ——— -—— an——— ——— — ——— -
LFXI RR « 750 — — m— — — — '.-"
Slw . &rs .250 . 4.50 | 4.25 | 4.25 | 4.25 | 5.50 J.0 -:
m sas .50 - . a—— —m— ——— a— —— ———
jwu RS 8.5 . 12.25 [13.25 [12.0 |[13.25 | 14.5 16.25 -
.>] ps.- RS . xo.zs 13.25 |14.25 [13.0 [l4.25 | 15.5 17.25
y LXA ‘i RS : ?ga -,‘ ;_ff,, 4,,1, o“i.) 6. 6.5 625 6a5 630 525
sl 0 RS (R1 EVEN) 6.53 | 7.53 | 6.28 | 7.53 | 8.78 10.53
(M .. RS (R1 00D) 2.15 6.28 | 7.28 | 6.03 ["7.28 | 8.53 10.28
M SRS (R1 EVEN) 2.40 _— | — | —] — —_— —_—
' n o SRS (R1 00D) 2.15 — | —] —] — — —
HE . .RS (Rl EVEN) 6.25 10.5 | 10.25] 10.25| 10.25 11.5 13.25
HE RS (Rl 00D) 5.75 16.0 | 9.75 | 9.75 | 9.75 | 11.0 12.75
Coo ke SRS (R1 EVEN) 5.75 — | — | —] —— — —
ne SRS (Rl COD) 5.75 —] — | —] — — —
HED RS 19.00 22.5 | 22.25(22.25| 22.25| 24.25 25.75
MER RR (R1 EVEN) 6.00 —_— | —] —] — —_— —_—
HER RR (Rl 00D) 5.50 L — | —] —] — —_— —_—
“MH RS <] 1.35 o S.48 | 5.23 | 5.23 | 5.23 | .48 J.98
M SRS 1.35 - Vi oae —_— | — | —] — -_— —_—
™I 1 1.35 Tt — | — | —] — — _—
| MM . oms - AVG. 3 1.7 o 5.83 | 5.58 | 5.58 | 5.58 | 6.825 .8.025
Flm RR (Rl EVEN) - - | 2.40 e —_— | —_—_ |- | — F—
M RR (Rl 000) 2.15 ‘— | — | —] — —_— —
HSTH s1 ' 3.0 : _— | — | — | —-— — —
] RR (SRC-DEST=1) | 9.5¢1.75%N (-2.25 FOR OSR) | | e | cwome | e _— —
HVH RR (COUNT EVEN) | 10.25+.875%N (~2.25 FOR DSR)| == | === | e | = — —_—
MV RR (COUNT 00D) 12.04.8y75%(N-1)(=2.25} DSR)| = | e | o | == —_— _—
] RR (COUNT NE6) 7.5 (-2.25 FOR DSR) — | —] —] — — —
HVH KRR (COUNT ZERO) | 7.75 (~2.25 FOR DSR) _— | — | —— | — — —_—
HvS RS 6.75 9.25 | 9.0 | 9.0 | 9.0 10.5 11.75
N RS .250 4.75 | 4.5 | 4.5 | &5 5.75 6.5
NCT RR 1.05 ¢ (.075 # N) — | — | —] — — —
NHI RI .250 —_— | —] —] — — —
NR RR .250 —_— | — | —] — — —
NST RS .750 6.0 | 7.0 | s.75| 7.0 8.25 10.25
] RS .250 4.75 | 4.5 | 4.5 | 4.5 | *5:75~ 6.5
. GII HI . .z.so L —sin—— —— a—— 7 e ——
e T

17-3

INSTRUCTIUN EXECUTIGN TIME IN US

e . HORIAL DOUBLE IRDIRECTION © AUTO AUTO
IRSTRUCTIGH a ADDRESSING XC=0 | xC30 | XUl | XCsl STCRAGE - THOEXTH
HOUES Cx0 | Cs1 | C30 | C sl | MOOIFICATION '
rs <750 6o | 7.0 |57 70 | sss . |rouzs _
RR 54,28 BUT <i2.3 (HO Cut DMA) | wmm — — o ———— ———
' .258 T a8 | eu2s | a2 | 28| 58 7.28
SKS «250 * wa— wm— waa ———e _—— prv—
sx s.' ——— P ——— an— —— ——
RS 18.12% 21.5 [24.35 [21.28 [24.5 -] 22.5 4
R3 .50 4.78 | 4.5 4.5 4.5 4.5 $.5
s 2.%0 wsanam eammm— ——— c—— — e
"3 6.50 18.7%] 10.3 | 10.5 | 10.5 11.% 13.5%
Kt &.2% i — w——— —— —— —— ¢
RR 2.29 —u— — —-— - — — c—
ns 250 4.50 | «.28 | 4.2 | 425 | s.78 7.2 |,
c SRS «258 R —— e —— w— e os—— b ~4
RS 1.50 4.50 | 5.50 | 4.25 | 5.50 6. 78 8.50 -
(3§ 1 1.50 —— ——— ——— — o— —-——
RS 1.0 ¢ (8.2 & N3 N> sy ——— — —-— —— — R
sas 475 ¢ (6.1 %)Y K3L — | —]—] —] e
KRR $.28 - —— — cm— —-— ——— ——
1] 258 : o—— —— —— em—— —u—— —
SRS 650 ¢ (6.1 & N} W ——— — — ——— —— ———
s 1.0 ¢ (0.25 ® H)} WX e — — —— —— ——
- SRS 1.0 ¢ (6.1 & N3 N9 D — — — —— —
‘SRS 2.0 ¢ (6.8 & ")." NC32 om—— —] cn— —— ———— P
wms 2.0 ¢ (3.5 & (H=32))) NOSIL | wwoe — s — a— ——
R 17.%0 .] o——— omnm ——— o commane ——— ————
Sis 450 ¢ (6.1 ® N3 WO — — — 4 — ———" —
s 650 ¢ (0.1 % N} W3O — | —] —] — | — — ;
RS 1.7% 10.63 [11.463 [10.38 [11.43 | 12.875 14,628 T
RS 1.8 o o—— ——i—— — — ———
U} 0.50 4,78 | 5.7% | 4.8 $.7% 7.8 9.0
sus 9.50 o | m— — — — com——
RS 215 | $35 475 50 Sy 90 * ot
RS 500 4,78 | &.3 4.5 4.5 4.5 7.5 -
ns 1.00 5.2% | 5.0 5.0 5.0 5.0 7.5 -
- RS Y 1] 4.50 | 5.50 | 4.285 | 5.50 6. 75 &.50 -l
Rs 7.25 10.2% |11.28 [10.0 |[1l1.285 | 12.5 14.25
RS L5 &5 8.0 &5 80 &35 875 /)
HR .5 % {§ ELIMENTS TESTED) - — — — — —
Ry 20.25 22.7% |23.7% [22.% |23.75 | 2S5.0 26.75
RS 3.0 $.78 | 5.50 | 5.50 | 5.50 | 6.75 8.25
IIS 107, S.l’ '-. ," ,o. ‘.25 ,073
RS 3.7% . 6.50 | 6.25 | 6.25 | ¢.23 7.5¢ 9.0
"3 239 4.75 | 4.50 | 4.50 | 4.50 5.7% 7.50
4RSS 250 —— —— om— ——— —— ——
RX 258 —— — — — ——— ——
8% 3.0 — — —— = — ——
;1] 258 — — —— —— — —
RS <750 6.0 7.8 5.7 | 7.0 8.25 10.258
an 1.0) w— a— e — — —
ns 1.50 4.50 | 5.50 | 4.28 | 5.50 .78 8.58
104 1.50 —— —— —— — w——— ——— “

17-4

Enee 70

